Skip to main content
Log in

Role of Reelin in the development and maintenance of cortical lamination

  • Basic Neurosciences, Genetics and Immunology - Review Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Reelin is a large extracellular matrix molecule, synthesized by early generated Cajal–Retzius cells in the marginal zone of the cortex. It plays an important role in the migration of cortical neurons and the development of cortical lamination. We recently discovered that Reelin is required not only for the formation of cortical layers during development but also for their maintenance in adulthood. Thus, decreased Reelin expression in a mouse model of epilepsy and in epileptic patients was accompanied by a loss of granule cell lamination, called granule cell dispersion, in the dentate gyrus of the hippocampal formation. Moreover, antibody blockade of Reelin in normal, adult mice resulted in granule cell dispersion. Collectively these findings point to a role for Reelin in the formation and maintenance of a laminated cortical structure. How does Reelin act on the cytoskeleton in the migration process of cortical neurons? It has been shown that Reelin signalling involves the lipoprotein receptors apolipoprotein E receptor 2 and very low density lipoprotein receptor, the adapter protein Disabled1, and phosphatidylinositol-3-kinase, but it has remained unclear how activation of the Reelin signalling cascade controls cytoskeletal reorganization. Here, we provide evidence that Reelin signalling leads to serine3 phosphorylation of cofilin, an actin-depolymerizing protein that promotes the disassembly of F-actin. Phosphorylation at serine3 renders cofilin unable to depolymerize F-actin, thereby stabilizing the cytoskeleton. Phosphorylation of cofilin in the leading processes of migrating neurons anchors them to the marginal zone containing Reelin. Our results indicate that Reelin-induced stabilization of the neuronal cytoskeleton is an important component of Reelin’s function in the development and maintenance of cortical architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Arber S, Barbayannis FA, Hanster H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809

    Article  CAS  PubMed  Google Scholar 

  • Arnaud L, Ballif BA, Förster E, Cooper JA (2003) Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr Biol 13:9–17

    Article  CAS  PubMed  Google Scholar 

  • Bellenchi GC, Gurniak CB, Perlas E, Middei S, Ammassari-Teule M, Witke W (2007) N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev 21:2347–2357

    Article  CAS  PubMed  Google Scholar 

  • Bock HH, Herz J (2003) Reelin activates SRC family tyrosine kinases in neurons. Curr Biol 13:18–26

    Article  CAS  PubMed  Google Scholar 

  • Bock HH, Jossin Y, Liu P, Förster E, May P, Goffinet AM, Herz J (2003) Phosphatidylinositol 3-kinase interacts with the adaptor protein Dab1 in response to Reelin signaling and is required for normal cortical lamination. J Biol Chem 278:38772–38779

    Article  CAS  PubMed  Google Scholar 

  • Chai X, Förster E, Zhao S, Bock HH, Frotscher M (2009) Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci 29:288–299

    Article  CAS  PubMed  Google Scholar 

  • Cooper JA (2008) A mechanism for inside-out lamination in the neocortex. Trends Neurosci 31:113–119

    Article  CAS  PubMed  Google Scholar 

  • D’Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, Curran T (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374:719–723

    Article  PubMed  Google Scholar 

  • D’Arcangelo G, Nakajima K, Miyata T, Ogawa M, Mikoshiba K, Curran T (1997) Reelin is a secreted glycoprotein recognized by the CR-50 monoclonal antibody. J Neurosci 17:23–31

    PubMed  Google Scholar 

  • Dawe HR, Minamide LS, Bamburg JR, Cramer LP (2003) ADF/cofilin controls cell polarity during fibroblast migration. Curr Biol 13:252–257

    Article  CAS  PubMed  Google Scholar 

  • Drakew A, Deller T, Heimrich B, Gebhardt C, Del Turco D, Tielsch A, Förster E, Herz J, Frotscher M (2002) Dentate granule cells in reeler mutants and VLDLR and ApoER2 knockout mice. Exp Neurol 176:12–24

    Article  CAS  PubMed  Google Scholar 

  • Fatemi SH, Stary JM, Araghi-Niknam M, Egan E (2005) GABAergic dysfunction in schizophrenia and mood disorders as reflected by decreased levels of reelin and GAD 65 and 67 kDa proteins in cerebellum. Schizophr Res 72:109–122

    Article  PubMed  Google Scholar 

  • Förster E, Zhao S, Frotscher M (2006) Laminating the hippocampus. Nat Rev Neurosci 7:259–267

    Article  PubMed  CAS  Google Scholar 

  • Frotscher M (1998) Cajal–Retzius cells, Reelin, and the formation of layers. Curr Opin Neurobiol 8:570–575

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofliln promotes actin polymerization and defines the direction of cell motility. Science 304:743–746

    Article  CAS  PubMed  Google Scholar 

  • Haas CA, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, Zentner J, Frotscher M (2002) Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci 22:5797–5802

    CAS  PubMed  Google Scholar 

  • Heinrich C, Nitta N, Flubacher A, Müller M, Fahrner A, Kirsch M, Freiman T, Suzuki F, Depaulis A, Frotscher M, Haas CA (2006) Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J Neurosci 26:4701–4713

    Article  CAS  PubMed  Google Scholar 

  • Howell BW, Herrick TM, Cooper JA (1999) Reelin-induced tyrosine phosphorylation of disabled 1 during neuronal positioning. Genes Dev 13:643–648. Erratum in: Genes Dev (1999) 13:1642

    Google Scholar 

  • Impagnatiello F, Guidotti AR, Pesold C, Dwivedi Y, Caruncho H, Pisu MG, Uzuniv DP, Smalheiser NR, Davis JM, Pandey GN, Pappas GD, Tueting P, Sharma RP, Costa E (1998) A decrease of reelin expression as a putative vulnerability factor in schizophrenia. Proc Natl Acad Sci USA 95:15718–15723

    Article  CAS  PubMed  Google Scholar 

  • Jovceva E, Larsen MR, Waterfield MD, Baum B, Timms JF (2007) Dynamic cofilin phosphorylation in the control of lamellipodial actin homeostasis. J Cell Science 120:1888–1897

    Article  CAS  PubMed  Google Scholar 

  • Kiuchi T, Ohashi K, Kurita S, Mizuno K (2007) Cofilin promotes stimulus-induced lamellipodium formation by generating an abundant supply of actin monomers. J Cell Biol 177:465–476

    Article  CAS  PubMed  Google Scholar 

  • Moriyama K, Lida K, Yahara I (1996) Phosphorylation of Ser-3 of cofilin regulates its essential function on actin. Genes Cells 1:73–86

    Article  CAS  PubMed  Google Scholar 

  • Müller MC, Osswald M, Tinnes S, Häussler U, Jacobi A, Förster E, Frotscher M, Haas CA (2009) Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol 216:390–397

    Article  PubMed  CAS  Google Scholar 

  • Nadarajah B, Parnavelas J (2002) Modes of neuronal migration in the developing cerebral cortex. Nat Rev Neurosci 3:423–432

    Article  CAS  PubMed  Google Scholar 

  • Nagaoka R, Abe H, Obinata T (1996) Site-directed mutagenesis of the phosphorylation site of cofilin; its role in cofilin-actin interaction and cytoplasmic localization. Cell Motil Cytoskeleton 35:200–209

    Article  CAS  PubMed  Google Scholar 

  • Rakic P, Caviness VS Jr (1995) Cortical development: view from neurological mutants two decades later. Neuron 14:1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Rice DS, Curran T (2001) Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci 24:1005–1039

    Article  CAS  PubMed  Google Scholar 

  • Soriano E, Del Rio JA (2005) The cells of Cajal–Retzius: still a mystery one century after. Neuron 46:389–394

    Article  CAS  PubMed  Google Scholar 

  • Stanfield BB, Cowan WM (1979a) The development of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185:423–460

    Article  CAS  PubMed  Google Scholar 

  • Stanfield BB, Cowan WM (1979b) The morphology of the hippocampus and dentate gyrus in normal and reeler mice. J Comp Neurol 185:393–422

    Article  CAS  PubMed  Google Scholar 

  • Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1985) Distribution and morphology of callosal commissural neurons within the motor cortex of normal and reeler mice. J Comp Neurol 232:83–98

    Article  CAS  PubMed  Google Scholar 

  • Terashima T, Takayama C, Ichikawa R, Inoue Y (1992) Dendritic arborization of large pyramidal neurons in the motor cortex of normal and reeler mutant mouse. Okajimas Folia Anat Jpn 68:351–363

    CAS  PubMed  Google Scholar 

  • Tissir F, Goffinet AM (2003) Reelin and brain development. Nat Rev Neurosci 4:496–505

    Article  CAS  PubMed  Google Scholar 

  • Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, Nimpf J, Hammer RE, Richardson JA, Herz J (1999) Reeler/disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97:689–701

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998) Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809–812

    Article  CAS  PubMed  Google Scholar 

  • Zebda N, Bernard O, Bailly M, Welti S, Lawrence D (2000) Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension J Cell Biol 151:1119–1127

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (SFB TR-3 to Michael Frotscher and Carola A. Haas, FO 223/6-1 to Eckart Förster and BO 1806/3-1 to Hans H. Bock, and SFB 780 to Michael Frotscher and Hans H. Bock). Michael Frotscher was supported by the Hertie Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Frotscher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frotscher, M., Chai, X., Bock, H.H. et al. Role of Reelin in the development and maintenance of cortical lamination. J Neural Transm 116, 1451–1455 (2009). https://doi.org/10.1007/s00702-009-0228-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-009-0228-7

Keywords

Navigation