Skip to main content
Log in

Chromosome number and genome size in Atriplex mollis from southern Tunisia and Atriplex lanfrancoi from Malta (Amaranthaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

In this work, we investigated the chromosome number and genome size of two Mediterranean Amaranthaceae species, namely Atriplex mollis from southern Tunisia and A. lanfrancoi (formerly Cremnophyton lanfrancoi) from Malta. The two species were found to be diploid (2n = 18) for all examined populations. This result is different from that previously reported for Cremnophyton lanfrancoi Brullo and Pavone (2n = 20). Genome size showed that both species have a close mean amount with 2C = 3.41 and 3.51 pg, respectively. Two groups were distinguished with regard to genome size (P < 0.01). It should, however, be noted that the majority of populations, with the exception of those from Djerba and Chbika, may be intermediate between the two basic groups. Moreover, the difference does not appear to depend on geographical distribution and environmental aspects. It would rather depend on chromosome rearrangements. The morphological similarities, the monophyly of Atriplex including A. lanfrancoi, previously ranked in genus Cremnophyton, sharing the same chromosome number and the same genome size, support the placement of Cremnophyton within the genus Atriplex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abd El-Hack ME, Samak DH, Noreldin AE, Arif M, Yaqoob HS, Swelem AA (2018) Towards saving freshwater: halophytes as unconventional feedstuffs in livestock feed: a review. Environm Sci Pollut Res 25:14397–14406. https://doi.org/10.1007/s11356-018-2052-9

    Article  CAS  Google Scholar 

  • Atia A, Rabhi M, Debez A, Abdelly Ch, Gouia H, Chaffei Haouari Ch, Smaoui A (2014) Ecophysiological aspects in 105 plant species of saline and arid environments in Tunisia. J Arid Land 6:762–770. https://doi.org/10.1007/s40333-014-0028-2

    Article  Google Scholar 

  • Bassett IJ, Crompton CW (1971) IOPB chromosome number reports XXXIV. Taxon 20:785–797

    Article  Google Scholar 

  • Belford HS, Thompson WF (1981) Single copy DNA homologies in Atriplex. 1. Cross-reactivity estimates and the role of deletions in genome evolution. Heredity 46:91–108. https://doi.org/10.1038/hdy.1981.9

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2012) Angiosperm DNA C-values database (release 8.0, Dec. 2012). Available at: http://www.kew.org/cvalues/

  • Boutaoui N, Zaiter L, Benayache F, Benayache S, Cacciagrano F, Cesa S, Secci D, Carradori S, Giusti AM, Campestre C, Menghini L, Locatelli M (2018) Atriplex mollis Desf. aerial parts: extraction procedures, secondary metabolites and color analysis. Molecules 23:1962. https://doi.org/10.3390/molecules23081962

    Article  CAS  PubMed Central  Google Scholar 

  • Brullo S, Pavone P (1987) Cremnophyton lanfrancoi: a new genus and species of Chenopodiaceae from Malta. Candollea 42:621–625

    Google Scholar 

  • CCDB chromosome counts database (2018). Available at: http://ccdb.tau.ac.il. Accessed 25 Mar 2018

  • Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Pl 31:113–120. https://doi.org/10.1007/BF02907241

    Article  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51:127–128. https://doi.org/10.1002/cyto.a.10013

    Article  PubMed  Google Scholar 

  • Duchoslav M, Šafářová L, Jandová M (2013) Role of adaptive and non-adaptive mechanisms forming complex patterns of genome size variation in six cytotypes of polyploid Allium oleraceum (Amaryllidaceae) on a continental scale. Ann Bot (Oxford) 111:419–431. https://doi.org/10.1093/aob/mcs297

    Article  CAS  Google Scholar 

  • Dunford MP (1984) Cytotype distribution of Atriplex canescens (Chenopodiaceae) of southern New Mexico and adjacent Texas. SW Naturalist 29:223–228

    Article  Google Scholar 

  • Dunford MP (1985) A statistical analysis of morphological variation in cytotypes of Atriplex canescens (Chenopodiaceae). SW Naturalist 30:377–384. https://doi.org/10.2307/3671270

    Article  Google Scholar 

  • Dušková E, Kolář F, Sklenář P, Rauchová J, Kubešová M, Fér T, Suda J, Marhold K (2010) Genome size correlates with growth form, habitat and phylogeny in the Andean genus Lasiocephalus (Asteraceae). Preslia 82:127–148

    Google Scholar 

  • Garcia S, Garnatje T, Twibell JD, Vallès J (2006) Genome size variation in the Artemisia arborescens complex (Asteraceae, Anthemideae) and its cultivars. Genome 49:244–253. https://doi.org/10.1139/g05-105

    Article  CAS  PubMed  Google Scholar 

  • Garnatje T, Garcia S, Canela MÁ (2007) Genome size variation from a phylogenetic perspective in the genus Cheirolophus Cass. (Asteraceae): biogeographic implications. Pl Syst Evol 264:117–134. https://doi.org/10.1007/s00606-006-0489-7

    Article  CAS  Google Scholar 

  • Greuter W, Burdet HM, Long G (1984) A critical inventory of vascular plants of the circum-Mediterranean countries, 1. Pteridophyta, 2nd edn., Gymnospermae, Dicotyledones (Acanthaceae-Cneoraceae). Conservatoire et Jardin Botaniques de la Ville de Geneve, Geneva

  • Hilda F, Jerrold D (2001) A cladistic analysis of Atripliceae (Chenopodiaceae) based on morphological data. J Torrey Bot Soc 128:297–319. https://doi.org/10.2307/3088719

    Article  Google Scholar 

  • Kadereit G, Mavrodiev EV, Zacharias EH, Sukhorukov AP (2010) Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of c 4 photosynthesis. Amer J Bot 97:1664–1687. https://doi.org/10.3732/ajb.1000169

    Article  Google Scholar 

  • Koocheki A (1996) The use of halophytes for forage production and combating desertification in Iran. In: ChoukrAllah R, Malcolm CV, Hamdy A (eds) Halophytes and biosaline agriculture. Marcel Dekker Inc, New York, pp 263–274

    Google Scholar 

  • Kiehn M, Vitek E, Hellmayr E, Walter J, Tschenett J, Justin C, Mann M (1991) Beiträgezur Flora von Österreich: chromosomenzählungen. Verh Zool Bot Ges Österr 128:19–39

    Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot (Oxford) 95:177–190. https://doi.org/10.1093/aob/mci011

    Article  CAS  Google Scholar 

  • Le Houérou HN (1985) Forage and fuel plants in the arid zone of North Africa, the near and middle east. In Plants for arid lands. Springer, Dordrecht, pp 117–141

    Chapter  Google Scholar 

  • Le Houérou HN (1992) The role of saltbushes (Atriplex spp) in arid land rehabilitation in the Mediterranean Basin: a review. Agroforest Syst 18:107–148. https://doi.org/10.1007/bf00115408

    Article  Google Scholar 

  • Lomonosova MN, Krasnikov AA (1992) Chromosome numbers in the members of the genus Atriplex (Chenopodiaceae). Bot Zhurn (Moscow & Leningrad) 77:99–100

    Google Scholar 

  • Lomonosova MN, Krasnikov AA, Krasnikova SA (2001) Chromosome numbers of Chenopodiaceae from Siberia. Bot Zhurn (Moscow & Leningrad) 86:145–146

    Google Scholar 

  • Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values of 70 species. Biol Cell 78:41–51. https://doi.org/10.1016/0248-4900(93)90113-S

    Article  CAS  PubMed  Google Scholar 

  • Morgan HD, Westoby M (2005) The relationship between nuclear DNA content and leaf strategy in seed plants. Ann Bot (Oxford) 96:1321–1330. https://doi.org/10.1093/aob/mci284

    Article  CAS  Google Scholar 

  • Neffati M, Akrimi N (1991) Espèces autochtones à usage multiple susceptibles d’être utilisées pour la revégétation des parcours dégradés en zones arides. Rev Régions Arides 9:4–109

    Google Scholar 

  • Nobs MA (1975) Chromosomal numbers in Atriplex. Carnegie Institute of Washington yearbook 74: 762–762. In: P. J. De Lange, B. G. Murray and G. M. Crowcroft (1997) Chromosome number of New Zealand specimens of Atriplex billardierei, Chenopodiaceae. New Zealand J Bot 35: 129–131. https://doi.org/10.1080/0028825x.1997.10410676

    Article  Google Scholar 

  • Ortiz-Dorda J, Martínez-Mora C, Correal E, Simón B, Cenis JL (2005) Genetic structure of Atriplex halimus populations in the Mediterranean Basin. Ann Bot (Oxford) 95:827–834. https://doi.org/10.1093/aob/mci086

    Article  CAS  Google Scholar 

  • Pottier-Alapetite G (1979) Flore de la Tunisie. Angiospermes-dicotylédones. Ministère de l’Enseignement Supérieur et de la Recherche Scientifique et le Ministère de l’Agriculture., Tunis

    Google Scholar 

  • Sanderson SC, Stutz HC, McArthur ED (1990) Geographic differentiation in Atriplex confertifolia. Amer J Bot 77:490–498. https://doi.org/10.2307/2444383

    Article  CAS  Google Scholar 

  • Seal AG (1983) The distribution and consequences of changes in nuclear DNA content. In: Brandham PE, Bennett MD (eds) Kew Chromosome Conference II, Proceedings of the Second Chromosome Conference held in the Jodrell Laboratory, Royal Botanic Gardens, Kew, England, 1–4 September 1982. G. Allen & Unwin, London, Boston, pp 225–231

    Google Scholar 

  • Stutz HC, Sanderson SC (1983) Evolutionary studies of Atriplex: chromosome races of A. confertifolia (shadscale). Amer J Bot 70:1536–1547. https://doi.org/10.2307/2443352

    Article  Google Scholar 

  • Suda J, Kyncl T, Freiová R (2003) Nuclear DNA amounts in Macaronesian angiosperms. Ann Bot (Oxford) 92:153–164. https://doi.org/10.1093/aob/mcg104

    Article  Google Scholar 

  • Te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P (2012) The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot (Oxford) 109:19–45. https://doi.org/10.1093/aob/mcr277

    Article  Google Scholar 

  • Tlili A, Sbissi I, Boughalleb F, Gouja H, Garnatje T, Vallès J, Neffati M (2019) Phylogenetic placement, floral anatomy and morphological characterization of the North African pastoral halophyte Atriplex mollis Desf. (Amaranthaceae). Turk J Bot 43:475–486. https://doi.org/10.3906/bot-1809-27

    Article  CAS  Google Scholar 

  • Walker DJ, Monino E, Gonzalez N, Frayssinet Correal E (2005) Determination of ploidy and nuclear DNA content I. in: populations of Atriplex halimus (Chenopodiaceae). Bot J Linn Soc 147:441–448. https://doi.org/10.1111/j.1095-8339.2004.00379.x

    Article  Google Scholar 

  • Walter H, Breckle SW (1986) Ecological systems of the geobiosphere, 2. Springer, New York

    Book  Google Scholar 

  • Zakharyeva OI, Soskov YD (1981) Chromosome numbers in desert herbage plants. Bull NI Vavilov Inst Pl Indus 108:57–60

    Google Scholar 

  • Zhu GL, Sanderson SC (2017) Genera and a new evolutionary system of world chenopodiaceae. Science press, Beijing

    Google Scholar 

Download references

Acknowledgements

This study was supported by the ERANETMED2-72-303 PACTORES project financed by the Ministry of Higher Education and Scientific Research of Tunisia and University of Malta (Argotti Botanic Gardens) and by projects 2017SGR1116 (Catalan government) and CGL2017-84297-R (Spanish government). Màrius Mumbrú and Chari González (Universitat de Barcelona) are thanked for their assistance in flow cytometric measurements. The authors thank Dr. Mohamed Tarhouni, senior lecturer and coordinator of the project “PACTORES,” Dr. Imed Sbissi, researcher at Arid Regions Institute and Dr. Sònia Garcia, researcher at Botanical Institute of Barcelona, for their help in prospection and discussion aspects, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abderrazak Tlili.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling Editor: Hanna Schneeweiss.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 112 kb)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Flow cytometry data illustration: fluorescence histograms of Atriplex mollis and A. lanfrancoi with Pisum sativum as standard: (a) A. mollis and P. sativum, (b) A. lanfrancoi and P. sativum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tlili, A., Gouja, H., Vallès, J. et al. Chromosome number and genome size in Atriplex mollis from southern Tunisia and Atriplex lanfrancoi from Malta (Amaranthaceae). Plant Syst Evol 306, 11 (2020). https://doi.org/10.1007/s00606-020-01643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00606-020-01643-1

Keywords

Navigation