Skip to main content
Log in

Laser-induced graphene electrodes on polyimide membranes modified with gold nanoparticles for the simultaneous detection of dopamine and uric acid in human serum

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The level control of biological active molecules in human body fluids is important for the surveillance of several human diseases. Dopamine (DA) and uric acid (UA) are two important biomarkers of neurological and bone diseases, respectively. Design of sensitive and cost-effective sensors for their detection is an effervescent research field. We report on the straightforward design of laser-induced graphene electrodes (LIGEs) from the laser ablation of a polyimide substrate and their modification by electrochemical deposition of gold nanoparticles (AuNPs/LIGE) and their uses as chemosensors. Electrochemical investigations showed that the presence of gold nanoclusters onto the electrode surface improved the electrochemical surface area (ECSA) and the heterogenous electron transfer (HET) rate. Furthermore, the AuNPs/LIGEs can be used to detect simultaneously low concentrations of DA and UA in presence of ascorbic acid (AA) as an potentially interfering substance at redox potentials of 300 mV, 230 mV and 450 mV and 91 mV, respectively, compared with the Ag/AgCl (3 M KCl) reference electrode in cyclic voltametric. The method displayed linear ranges varying from 2 to 20 μM and 5 to 50 μM, led to limits of detection of 0.37 μM and 0.71 μM for DA and UA, respectively. The AuNPs/LIGE was applied to simultaneously detect both analytes in scarcely diluted human serum with good recoveries. The data show that the recovery percentages ranged from 94% ± 2.1 to 102 % ± 0.5 and from 94% ±0.3 to 112% ± 1.4 for dopamine and uric acid, respectively. Thus, the AuNPs/LIGEs are promising candidates for the detection of other biologically active molecules such as drugs, pesticides, and metabolites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sets generated during the current study are available from the corresponding author on reasonable request.

Abbreviations

AA:

Ascorbic acid

ASSURED:

Affordable, Sensitive, Specific, User-friendly, Rapid and robust, Equipment-free and Deliverable to end-users

AuNPs:

Gold Nanoparticles

CV:

Cyclic Voltammetry

DA:

Dopamine

DPV:

Differential Pulse Voltammetry

EIS:

Electrochemical Impedance Spectroscopy

LIGEs:

Laser-Induced Graphene Electrodes

PI:

Polyimide

UA:

Uric acid

UV:

ultraviolet

WHO:

World Health Organization

References

  1. Zhang X, Zhang Y-C, Ma L-X (2016) One-pot facile fabrication of graphene-zinc oxide composite and its enhanced sensitivity for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Sens Actuators B 227:488–496. https://doi.org/10.1016/j.snb.2015.12.073

    Article  CAS  Google Scholar 

  2. Yang B, Wang H, Du J et al (2014) Direct electrodeposition of reduced graphene oxide on carbon fiber electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Colloids Surf A Physicochem Eng Asp 456:146–152. https://doi.org/10.1016/j.colsurfa.2014.05.029

    Article  CAS  Google Scholar 

  3. El Ridi R, Tallima H (2017) Physiological functions and pathogenic potential of uric acid: a review. J Adv Res 8:487–493. https://doi.org/10.1016/j.jare.2017.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu G, Jarjes ZA, Desprez V et al (2018) Sensitive, selective, disposable electrochemical dopamine sensor based on PEDOT-modified laser scribed graphene. Biosens Bioelectron 107:184–191. https://doi.org/10.1016/j.bios.2018.02.031

    Article  CAS  PubMed  Google Scholar 

  5. Causon RC, Carruthers ME, Rodnight R (1981) Assay of plasma catecholamines by liquid chromatography with electrochemical detection. Anal Biochem 116:223–226. https://doi.org/10.1016/0003-2697(81)90347-X

    Article  CAS  PubMed  Google Scholar 

  6. Perati PR, Cheng J, Jandik P, Hanko VP (2010) Disposable carbon electrodes for liquid chromatographic detection of catecholamines in blood plasma samples. Electroanalysis 22:325–332. https://doi.org/10.1002/elan.200900334

    Article  CAS  Google Scholar 

  7. Arumugasamy SK, Govindaraju S, Yun K (2020) Electrochemical sensor for detecting dopamine using graphene quantum dots incorporated with multiwall carbon nanotubes. Appl Surf Sci 508:145294. https://doi.org/10.1016/j.apsusc.2020.145294

    Article  CAS  Google Scholar 

  8. Chauhan N, Pundir CS (2011) An amperometric uric acid biosensor based on multiwalled carbon nanotube – gold nanoparticle composite. Anal Biochem 413:97–103. https://doi.org/10.1016/j.ab.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  9. Abbas MW, Soomro RA, Kalwar NH et al (2019) Carbon quantum dot coated Fe3O4 hybrid composites for sensitive electrochemical detection of uric acid. Microchem J 146:517–524. https://doi.org/10.1016/j.microc.2019.01.034

    Article  CAS  Google Scholar 

  10. Erden PE, Kılıç E (2013) A review of enzymatic uric acid biosensors based on amperometric detection. Talanta 107:312–323. https://doi.org/10.1016/j.talanta.2013.01.043

    Article  CAS  PubMed  Google Scholar 

  11. Lan Y, Yuan F, Fereja TH et al (2019) Chemiluminescence of lucigenin/riboflavin and its application for selective and sensitive dopamine detection. Anal Chem 91:2135–2139. https://doi.org/10.1021/acs.analchem.8b04670

    Article  CAS  PubMed  Google Scholar 

  12. Mostafiz B, Bigdeli SA, Banan K et al (2021) Molecularly imprinted polymer-carbon paste electrode (MIP-CPE)-based sensors for the sensitive detection of organic and inorganic environmental pollutants: a review. Trends Environ Anal Chem 32:e00144. https://doi.org/10.1016/j.teac.2021.e00144

    Article  CAS  Google Scholar 

  13. Qi D, Zhang Q, Zhou W et al (2016) Quantification of dopamine in brain microdialysates with high-performance liquid chromatography-tandem mass spectrometry. Anal Sci 32:419–424. https://doi.org/10.2116/analsci.32.419

    Article  CAS  PubMed  Google Scholar 

  14. Land KJ, Boeras DI, Chen X-S et al (2018) REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat Microbiol 4:46–54. https://doi.org/10.1038/s41564-018-0295-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Otoo JA, Schlappi TS (2022) REASSURED Multiplex Diagnostics: a critical review and forecast. Biosensors 12:124. https://doi.org/10.3390/bios12020124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Forzani ES, Rivas GA, Solis VM (1995) Amperometric determination of dopamine on an enzymatically modified carbon paste electrode. J Electroanal Chem 382:33–40. https://doi.org/10.1016/0022-0728(94)03640-O

    Article  Google Scholar 

  17. Zhang F, Wang X, Ai S et al (2004) Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Anal Chim Acta 519:155–160. https://doi.org/10.1016/j.aca.2004.05.070

    Article  CAS  Google Scholar 

  18. Faruk Hossain M, Slaughter G (2021) Flexible electrochemical uric acid and glucose biosensor. Bioelectrochemistry 141:107870. https://doi.org/10.1016/j.bioelechem.2021.107870

    Article  CAS  PubMed  Google Scholar 

  19. Santos NF, Pereira SO, Moreira A et al (2021) IR and UV laser-induced graphene: application as dopamine electrochemical sensors. Advanced Materials Technologies 6:2100007. https://doi.org/10.1002/admt.202100007

    Article  CAS  Google Scholar 

  20. Lahcen AA, Rauf S, Beduk T et al (2020) Electrochemical sensors and biosensors using laser-derived graphene: a comprehensive review. Biosens Bioelectron 168:112565. https://doi.org/10.1016/j.bios.2020.112565

    Article  CAS  PubMed  Google Scholar 

  21. Lin J, Peng Z, Liu Y et al (2014) Laser-induced porous graphene films from commercial polymers. Nat Commun 5:5714. https://doi.org/10.1038/ncomms6714

    Article  CAS  PubMed  Google Scholar 

  22. Wang F, Wang K, Zheng B et al (2018) Laser-induced graphene: preparation, functionalization and applications. Mater Technol 33:340–356. https://doi.org/10.1080/10667857.2018.1447265

    Article  CAS  Google Scholar 

  23. Chyan Y, Ye R, Li Y et al (2018) Laser-induced graphene by multiple lasing: toward electronics on cloth, paper, and food. ACS Nano 12:2176–2183. https://doi.org/10.1021/acsnano.7b08539

    Article  CAS  PubMed  Google Scholar 

  24. Silva AD, Paschoalino WJ, Damasceno JPV, Kubota LT (2020) Structure, properties, and electrochemical sensing applications of graphene-based materials. ChemElectroChem 7:4508–4525. https://doi.org/10.1002/celc.202001168

    Article  CAS  Google Scholar 

  25. Hui X, Xuan X, Kim J, Park JY (2019) A highly flexible and selective dopamine sensor based on Pt-Au nanoparticle-modified laser-induced graphene. Electrochim Acta 328:135066. https://doi.org/10.1016/j.electacta.2019.135066

    Article  CAS  Google Scholar 

  26. Chang Z, Zhu B, Liu J et al (2021) Electrochemical aptasensor for 17β-estradiol using disposable laser scribed graphene electrodes. Biosens Bioelectron 185:113247. https://doi.org/10.1016/j.bios.2021.113247

    Article  CAS  PubMed  Google Scholar 

  27. Fenzl C, Nayak P, Hirsch T et al (2017) Laser-scribed graphene electrodes for aptamer-based biosensing. ACS Sens 2:616–620. https://doi.org/10.1021/acssensors.7b00066

    Article  CAS  PubMed  Google Scholar 

  28. Aparicio-Martínez E, Ibarra A, Estrada-Moreno IA et al (2019) Flexible electrochemical sensor based on laser scribed graphene/Ag nanoparticles for non-enzymatic hydrogen peroxide detection. Sens Actuators B 301:127101. https://doi.org/10.1016/j.snb.2019.127101

    Article  CAS  Google Scholar 

  29. Kurra N, Jiang Q, Nayak P, Alshareef HN (2019) Laser-derived graphene: a three-dimensional printed graphene electrode and its emerging applications. Nano Today 24:81–102. https://doi.org/10.1016/j.nantod.2018.12.003

    Article  CAS  Google Scholar 

  30. Baachaoui S, Mabrouk M, Rabti A, Ghodbane O, Raouafi N (2023) Laser-induced graphene electrodes scribed onto novel carbon black-doped polyethersulfone membranes for flexible high-performance microsupercapacitors. J Colloid Interface Sci 646:1–10. https://doi.org/10.1016/j.jcis.2023.05.024

  31. Ghanam A, Lahcen AA, Beduk T et al (2020) Laser scribed graphene: a novel platform for highly sensitive detection of electroactive biomolecules. Biosens Bioelectron 168:112509. https://doi.org/10.1016/j.bios.2020.112509

    Article  CAS  PubMed  Google Scholar 

  32. Berni A, Lahcen AA, Amine A (2022) Electrochemical sensing of paracetamol using 3D porous laser scribed graphene platform. Electroanalysis elan.202200137. https://doi.org/10.1002/elan.202200137

  33. Kavai MS, de Lima LF, de Araujo WR (2023) A disposable and low-cost laser-scribed graphene electrochemical sensor for simultaneous detection of hydroquinone, paracetamol and methylparaben. Mater Lett 330:133211. https://doi.org/10.1016/j.matlet.2022.133211

    Article  CAS  Google Scholar 

  34. Nasraoui S, Ameur S, Al-Hamry A et al (2022) Development of an efficient voltammetric sensor for the monitoring of 4-aminophenol based on flexible laser induced graphene electrodes modified with MWCNT-PANI. Sensors 22:833. https://doi.org/10.3390/s22030833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Behrent A, Griesche C, Sippel P, Baeumner AJ (2021) Process-property correlations in laser-induced graphene electrodes for electrochemical sensing. Microchim Acta 188:159. https://doi.org/10.1007/s00604-021-04792-3

    Article  CAS  Google Scholar 

  36. Chem JM (2012) One-step and high yield simultaneous preparation of single- and multi-layer. 8764–8766. https://doi.org/10.1039/c2jm30658a

  37. Argoubi W, Saadaoui M, Ben Aoun S, Raouafi N (2015) Optimized design of a nanostructured SPCE-based multipurpose biosensing platform formed by ferrocene-tethered electrochemically-deposited cauliflower-shaped gold nanoparticles. Beilstein J Nanotechnol 6:1840–1852. https://doi.org/10.3762/bjnano.6.187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dreyfus RW (1992) CN temperatures above laser ablated polyimide. Appl Phys A 55:335–339. https://doi.org/10.1007/BF00324081

    Article  Google Scholar 

  39. Hui Z, Wenmin W (2016) Sensitive electrochemical determination uric acid at Pt nanoparticles decorated graphene composites in the presence of dopamine and ascorbic acid. Int J Electrochem Sci:5197–5206. https://doi.org/10.20964/2016.06.54

  40. Ferrari AC, Meyer JC, Scardaci V et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401. https://doi.org/10.1103/PhysRevLett.97.187401

    Article  CAS  PubMed  Google Scholar 

  41. Nayak P, Kurra N, Xia C, Alshareef HN (2016) Highly efficient laser scribed graphene electrodes for on-chip electrochemical sensing applications. Adv Electron Mater 2:1600185. https://doi.org/10.1002/aelm.201600185

    Article  CAS  Google Scholar 

  42. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355. https://doi.org/10.1021/ac60230a016

    Article  CAS  Google Scholar 

  43. Muzyka K, Xu G (2022) Laser induced graphene in facts, numbers, and notes in view of electroanalytical applications: a review. Electroanalysis 34:574–589. https://doi.org/10.1002/elan.202100425

    Article  CAS  Google Scholar 

  44. Ojani R, Raoof JB, Maleki AA, Safshekan S Simultaneous and sensitive detection of dopamine and uric acid using a poly ( L - methionine )/ gold nanoparticle - modified glassy carbon electrode. Chinese J Catal 35:423–429. https://doi.org/10.1016/S1872-2067(14)60022-X

  45. Wang C, Du J, Wang H et al (2014) A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sens Actuators B 204:302–309. https://doi.org/10.1016/j.snb.2014.07.077

    Article  CAS  Google Scholar 

  46. Umek N, Geršak B, Vintar N et al (2018) Dopamine autoxidation is controlled by acidic pH. Front Mol Neurosci 11:467. https://doi.org/10.3389/fnmol.2018.00467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shen Y, Ye MY (1994) Determination of the stability of dopamine in aqueous solutions by high performance liquid chromatography. J Liq Chromatogr 17:1557–1565. https://doi.org/10.1080/10826079408013178

    Article  CAS  Google Scholar 

  48. Alba AF, Totoricaguena-Gorriño J, Sánchez-Ilárduya MB et al (2021) Laser-activated screen-printed carbon electrodes for enhanced dopamine determination in the presence of ascorbic and uric acid. Electrochim Acta 399:139374. https://doi.org/10.1016/j.electacta.2021.139374

    Article  CAS  Google Scholar 

  49. Zouari M, Campuzano S, Pingarrón JM, Raouafi N (2017) Competitive RNA-RNA hybridization-based integrated nanostructured-disposable electrode for highly sensitive determination of miRNAs in cancer cells. Biosens Bioelectron 91:40–45. https://doi.org/10.1016/j.bios.2016.12.033

    Article  CAS  PubMed  Google Scholar 

  50. Zouari M, Campuzano S, Pingarrón JM, Raouafi N (2018) Ultrasensitive determination of microribonucleic acids in cancer cells with nanostructured-disposable electrodes using the viral protein p19 for recognition of ribonucleic acid/microribonucleic acid homoduplexes. Electrochim Acta 262:39–47. https://doi.org/10.1016/j.electacta.2017.12.190

    Article  CAS  Google Scholar 

  51. Zouari M, Campuzano S, Pingarrón JM, Raouafi N (2020) Determination of miRNAs in serum of cancer patients with a label- and enzyme-free voltammetric biosensor in a single 30-min step. Microchim Acta 187:444. https://doi.org/10.1007/s00604-020-04400-w

    Article  CAS  Google Scholar 

  52. Zayani R, Rabti A, Ben Aoun S, Raouafi N (2021) Fluorescent and electrochemical bimodal bioplatform for femtomolar detection of microRNAs in blood sera. Sens Actuators B 327:128950. https://doi.org/10.1016/j.snb.2020.128950

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude to the Ministry of Higher Education, Research and Innovation of Burkina Faso through the Higher Education Support Project (PAES) financially supported by World Bank. Ms Bibata OUEDRAOGO would like to thank the International Science Programme (ISP) through the African Network of Electroanalytical Chemists (ANEC) for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Raouafi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouedraogo, B., Baachaoui, S., Tall, A. et al. Laser-induced graphene electrodes on polyimide membranes modified with gold nanoparticles for the simultaneous detection of dopamine and uric acid in human serum. Microchim Acta 190, 316 (2023). https://doi.org/10.1007/s00604-023-05909-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05909-6

Keywords

Navigation