Skip to main content
Log in

Label-free silver triangular nanoplates for spectrophotometric determination of catecholamines and their metabolites

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel method towards spectrophotometric determination of catecholamines and their metabolites differing in their functional groups has been developed. This method is based on a change in morphology of silver triangular nanoplates upon the action of cateсholamines and their metabolites, which is manifested by the decrease of the nanoparticle local surface plasmon resonance (LSPR) band intensity or its shift to the short-wavelength region of the spectrum. The shift value of the LSPR band or the change of its intensity increases with increasing concentration of catecholamines or their metabolites, which is proposed for their spectrophotometric determination. The limits of detection of catecholamines and their metabolites under selected conditions increase in the series homovanillic acid < vanillylmandelic acid < L-epinephrine < L-norepinephrine < dopamine and are 0.25, 1.2, 3.0, 64, and 130 μmol L−1, respectively. The selectivity of the proposed method was assessed using vanillylmandelic acid as example. It was found that the determination of vanillylmandelic acid does is not interfered in the presence of 4000-fold excess of Na+, K+, CH3COO, and 1000-fold excess of Mg2+, Ca2+, Al3+, NO3. The method also allows for the selective determination of vanillylmandelic acid in the presence of a 1000-fold excess of structurally related substances that do not contain either a catechol fragment or an electron donor substituent. The proposed approach was successfully applied to the determination of catecholamines in pharmaceuticals and artificial urine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tsogas GZ, Kappi FA, Vlessidis AG, Giokas DL (2018) Recent advances in nanomaterial probes for optical biothiol sensing: a review. Anal Lett 51:443–468

    Article  CAS  Google Scholar 

  2. Apyari VV, Dmitrienko SG, Gorbunova MV, Furletov AA, Zolotov Yu A (2019) Gold and silver nanoparticles in optical molecular absorption spectroscopy. J Anal Chem 74:21–32

    Article  CAS  Google Scholar 

  3. Apyari VV, Terenteva EA, Kolomnikova AR, Garshev AV, Dmitrienko SG, Zolotov Yu A (2019) Potentialities of differently-stabilized silver nanoparticles for spectrophotometric determination of peroxides. Talanta 202:51–58

    Article  CAS  Google Scholar 

  4. Kappi FA, Tsogas GZ, Giokas DL, Christodouleas DC, Vlessidis AG (2014) Colorimetric and visual read-out determination of cyanuric acid exploiting the interaction between melamine and silver nanoparticles. Microchim Acta 181:623–629

    Article  CAS  Google Scholar 

  5. Wang C, Bi X, Wang M, Zhao X, Lin Y (2019) Dual-channel online optical detection platform integrated with a visible light absorption approach for continuous and simultaneous in vivo monitoring of ascorbic acid and copper(II) ions in a living rat brain. Anal Chem 91:16010–16016

    Article  CAS  Google Scholar 

  6. Yan P, Ding Z, Li X, Dong Y, Fu T, Wu Y (2019) Colorimetric sensor array based on Wulff-type boronate functionalized AgNPs at various pH for bacteria identification. Anal Chem 91:12134–12137

    Article  CAS  Google Scholar 

  7. Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A (2016) Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ 4. https://doi.org/10.7717/peerj2589

  8. Khodashenas B, Ghorbani HR (2019) Synthesis of silver nanoparticles with different shapes. Arab J Chem 12:1823–1838

    Article  CAS  Google Scholar 

  9. Haifa SA-G, Waleed EM (2013) One pot synthesis of multi-plasmonic shapes of silver nanoparticles. Mater Lett 105:62–64

    Article  Google Scholar 

  10. Kim B-H, Lee J-S (2015) One-pot photochemical synthesis of silver nanodisks using a conventional metal-halide lamp. Mater Chem Phys 149–150:678–685

    Article  Google Scholar 

  11. Sharma D, Rakshana DA, Balakrishnan RM, JagadeeshBabu PE (2019) One step synthesis of silver nanowires using fructose as a reducing agent and its antibacterial and antioxidant analysis. Mater Res Express 6. https://doi.org/10.1088/2053-1591/ab170a

  12. Pourjavadi A, Soleyman R (2011) Novel silver nano-wedges for killing microorganisms. Mater Res Bull 46:1860–1865

    Article  CAS  Google Scholar 

  13. Shaheen T, Fouda A (2018) Green approach for one–pot synthesis of silver nanorod using cellulose nanocrystal and their cytotoxicity and antibacterail assessment. Int J Biol Macromol 106:784–792

    Article  CAS  Google Scholar 

  14. Haber J, Sokolov K (2017) Synthesis of stable citrate-capped silver nanoprisms. Langmuir 33:10525–10530

    Article  CAS  Google Scholar 

  15. Marta B, Jakab E, Potara M, Simon T, Imre-Lucaci F, Barbu-Tudoran L, Popescu O, Astilean S (2014) Pluronic-coated silver nanoprisms: synthesis, characterization and their antibacterial activity. Colloids Surf A Physicochem Eng Asp 441:77–83

    Article  CAS  Google Scholar 

  16. Furletov AA, Apyari VV, Garshev AV, Volkov PA, Dmitrienko SG (2019) Silver triangular nanoplates as a colorimetric probe for sensing thiols: characterization in the interaction with structurally related thiols of different functionality. Microchem J 147:979–984

    Article  CAS  Google Scholar 

  17. Wang Y, Yang Y, Liu W, Ding F, Zhao Q, Zou P, Wang X, Rao H (2018) Colorimetric and fluorometric determination of uric acid based on the use of nitrogen-doped carbon quantum dots and silver triangular nanoprisms. Microchim Acta 185. https://doi.org/10.1007/s00604-018-2814-6

  18. Shen J, Sun C, Wu X (2017) Silver nanoprisms-based Tb(III) fluorescence sensor for highly selective detection of dopamine. Talanta 165:369–376

    Article  CAS  Google Scholar 

  19. Zhang P, Wang L, Zeng J, Tan J, Long Y, Wang Y (2020) Colorimetric captopril assay based on oxidative etching-directed morphology control of silver nanoprisms. Microchim Acta 187. https://doi.org/10.1007/s00604-019-4071-8

  20. Fang X, Ren H, Zhao H, Li Z (2017) Ultrasensitive visual and colorimetric determination of dopamine based on the prevention of etching of silver nanoprisms by chloride. Microchim Acta 184:415–421

    Article  CAS  Google Scholar 

  21. Djelić N, Radaković M, Borozan S, Dimirijević-Srećković V, Pajović N, Vejnović B, Borozan N, Bankoglu E, Stopper H, Stanimirović Z (2019) Oxidative stress and DNA damage in peripheral blood mononuclear cells from normal, obese, prediabetic and diabetic persons exposed to adrenaline in vitro. Mutat Res Genet Toxicol Environ Mutagen 843:81–89

    Article  Google Scholar 

  22. Whiting M, Doogue M (2009) Advances in biochemical screening for pheochromocytoma using biogenic amines. Clin Biochem Rev 30:3–17

    PubMed  PubMed Central  Google Scholar 

  23. Y-Hassan S (2019) Plasma epinephrine level and its causal link to Takotsubo syndrome revisited: critical review with a diverse conclusion. Cardiovasc Revasc Med 20:907–914

    Article  Google Scholar 

  24. Shaikshavali P, Madhusudana Reddy T, Ven Gopal T, Venkataprasad G, Kotakadi V S, Palakollu V N, Karpoormath R (2020) A simple sonochemical assisted synthesis of nanocomposite (ZnO/MWCNTs) for electrochemical sensing of epinephrine in human serum and pharmaceutical formulation. Colloids Surf A 584. https://doi.org/10.1016/jcolsurfa2019124038

  25. Beitollahi H, Dourandish Z, Tajik S, Ganjali MR, Norouzi P, Faridbod F (2018) Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine. J Rare Earth 36:750–757

    Article  CAS  Google Scholar 

  26. Sun Y, Wang S, Zhang X, Huang Y (2006) Simultaneous determination of epinephrine and ascorbic acid at the electrochemical sensor of triazole SAM modified gold electrode. Sensors Actuators B 113:156–161

    Article  CAS  Google Scholar 

  27. Anithaa AC, Lavanya N, Asokan K, Sekar C (2015) WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochim Acta 167:294–302

    Article  CAS  Google Scholar 

  28. Amjadi M, Hallaj T, Manzoori JL, Shahbazsaghir T (2018) An amplified chemiluminescence system based on Si-doped carbon dots for detection of catecholamines. Spectrochim Acta A 201:223–228

    Article  CAS  Google Scholar 

  29. Zhu L, Xu G, Song Q, Tang T, Wang X, Wei F, Hu Q (2016) Highly sensitive determination of dopamine by a turn-on fluorescent biosensor based on aptamer labeled carbon dots and nano-graphite. Sensors Actuators B 231:506–512

    Article  CAS  Google Scholar 

  30. Gorbunova M, Gutorova S, Berseneva D, Apyari V, Zaitsev V, Dmitrienko S, Zolotov Y (2019) Spectroscopic methods for determination of catecholamines: a mini-review. Appl Spectrosc Rev 54:631–652

    Article  CAS  Google Scholar 

  31. Godoy-Reyes TM, Costero AM, Gaviña P, Martínez-Máñez R, Sancenón F (2019) Colorimetric detection of normetanephrine, a pheochromocytoma biomarker, using bifunctionalised gold nanoparticles. Anal Chim Acta 1056:146–152

    Article  CAS  Google Scholar 

  32. Gorbunova MV, Apyari VV, Zolotov II, Dmitrienko SG, Garshev AV, Volkov PA, Bochenkov VE (2019) A new nanocomposite optical sensor based on polyurethane foam and gold nanorods for solid-phase spectroscopic determination of catecholamines. Gold Bull 52:115–124

    Article  CAS  Google Scholar 

  33. Dunand M, Gubian D, Stauffer M, Abid K, Grouzmann E (2013) High–throughput and sensitive quantitation of plasma catecholamines by ultraperformance liquid chromatography–tandem mass spectrometry using a solid phase microwell extraction. Anal Chem 85:3539–3544

    Article  CAS  Google Scholar 

  34. Ma J-B, Qiu H-W, Rui Q-H, Liao Y-F, Chen Y-M, Xu J, Zhan P-P, Zhao Y-G (2016) Fast determination of catecholamines in human plasma using carboxyl-functionalized magnetic-carbon nanotube molecularly imprinted polymer followed by liquid chromatography-tandem quadrupole mass spectrometry. J Chromatogr A 1429:86–96

    Article  CAS  Google Scholar 

  35. Clark ZD, Cutler JM, Pavlov IY, Strathmann FG, Frank EL (2017) Simple dilute-and-shoot method for urinary vanillylmandelic acid and homovanillic acid by liquid chromatography tandem mass spectrometry. Clin Chim Acta 468:201–208

    Article  CAS  Google Scholar 

  36. Zhang G, Zhang Y, Ji C, McDonald T, Walton J, Groeber E, Steenwyk R, Lin Z (2012) Ultra sensitive measurement of endogenous epinephrine and norepinephrine in human plasma by semi-automated SPE-LC-MS/MS. J Chromatogr B 895:186–190

    Article  Google Scholar 

  37. Abkhalimov EV, Timofeev AA, Ershov BG (2018) Electrochemical mechanism of silver nanoprisms transformation in aqueous solutions containing the halide ions. J Nanopart Res 20:26. https://doi.org/10.1007/s11051-018-4133-6

    Article  CAS  Google Scholar 

  38. Němečková-Makrlíková A, Navrátil T, Barek J, Štenclová P, Kromka A, Vyskočil V (2019) Determination of tumour biomarkers homovanillic and vanillylmandelic acid using flow injection analysis with amperometric detection at a boron doped diamond electrode. Anal Chim Acta 1087:44–50

    Article  Google Scholar 

  39. Baluchová S, Barek J, Tomé LIN, Brett CMA, Schwarzová-Pecková K (2018) Vanillylmandelic and homovanillic acid: electroanalysis at non-modified and polymer-modified carbon-based electrodes. J Electroanal Chem 821:22–32

    Article  Google Scholar 

  40. Li X, Jin W, Weng Q (2002) Separation and determination of homovanillic acid and vanillylmandelic acid by capillary electrophoresis with electrochemical detection. Anal Chim Acta 461:123–130

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (grant no. 18-73-10001). Some studies were performed using instrumentation provided according to the M.V. Lomonosov Moscow State University Program of Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir V. Apyari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaytsev, V.D., Furletov, A.A., Apyari, V.V. et al. Label-free silver triangular nanoplates for spectrophotometric determination of catecholamines and their metabolites. Microchim Acta 187, 610 (2020). https://doi.org/10.1007/s00604-020-04576-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04576-1

Keywords

Navigation