Skip to main content
Log in

Electrospun polyacrylonitrile fibers with and without magnetic nanoparticles for selective and efficient separation of glycoproteins

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Polyacrylonitrile fibers with and without magnetic nanoparticles (Fe3O4 NPs) were prepared by electrospinning. The pure polyacrylonitrile (PAN) fibers and the composited polyacrylonitrile (PAN/Fe3O4) fibers were studied with respect to their capability for enrichment of glycoproteins. Specifically, the glycoproteins ovalbumin (OB) and transferrin (Trf) were studied and compared to the non-glycoproteins bovine serum albumin and lysozyme. Following adsorption and subsequent protein elution with 0.1 wt% of CTAB solution, the glycoproteins were analyzed by SDS polyacrylamide gel electrophoresis. The strong interaction between PAN or PAN/Fe3O4 fibers and glycoproteins is attributed to the synergistic effects of hydrophilic and hydrogen bond interactions. The PAN/Fe3O4 fibers have an attractive additional feature of allowing magnetic separation. The PAN and PAN/Fe3O4 fibers have a high adsorption capacity toward OB and Trf. The treated PAN/Fe3O4 fibers display good selectivity, fast adsorption kinetics, and were applied to extractions of mixed protein samples. The detection limits of OB and Trf are 0.32 and 0.22 μg·mL−1, respectively. The PAN/Fe3O4 fibers offered an alternative solution for adsorption of glycoproteins from biological samples.

The pure polyacrylonitrile (PAN) fibers and the composited polyacrylonitrile (PAN/Fe3O4) fibers were studied with respect to their capability for enrichment of glycoproteins: glycoproteins ovalbumin (OB) and transferrin (Trf). The treated PAN/Fe3O4 fibers showed fast adsorption kinetics, were applied in a physiological state, mixed and real samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tuccillo FM, de Laurentiis A, Palmieri C, Fiume G, Bonelli P, Borrelli A, Tassone P, Scala I, Buonaguro FM, Quinto I, Scala G (2014) Aberrant glycosylation as biomarker for cancer: focus on CD43. Biomed Res Int 2014:742831. https://doi.org/10.1155/2014/742831

  2. Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291(5512):2370. https://doi.org/10.1126/science.291.5512.2370

    Article  CAS  PubMed  Google Scholar 

  3. Zhao YY, Takahashi M, Gu JG, Miyoshi E, Matsumoto A, Kitazume S, Taniguchi N (2008) Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci 99(7):1304–1310. https://doi.org/10.1111/j.1349-7006.2008.00839.x

    Article  CAS  PubMed  Google Scholar 

  4. Padler-Karavani V (2014) Aiming at the sweet side of cancer: aberrant glycosylation as possible target for personalized-medicine. Cancer Lett 352(1):102–112. https://doi.org/10.1016/j.canlet.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Tao SC, Bova GS, Liu AY, Chan DW, Zhu H, Zhang H (2011) Detection and verification of glycosylation patterns of glycoproteins from clinical specimens using lectin microarrays and lectin-based immunosorbent assays. Anal Chem 83(22):8509–8516. https://doi.org/10.1021/ac201452f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jensen PH, Karlsson NG, Kolarich D, Packer NH (2012) Structural analysis of N- and O-glycans released from glycoproteins. Nat Protoc 7:1299. https://doi.org/10.1038/nprot.2012.063

    Article  CAS  PubMed  Google Scholar 

  7. Adamczyk B, Tharmalingam T, Rudd PM (2012) Glycans as cancer biomarkers. Biochim Biophys Acta, Gen. Subj. 1820(9):1347–1353. https://doi.org/10.1016/j.bbagen. 2011. 12.001

  8. Sun XY, Ma RT, Chen J, Shi YP (2018) Magnetic boronate modified molecularly imprinted polymers on magnetite microspheres modified with porous TiO2 (Fe3O4@pTiO2@MIP) with enhanced adsorption capacity for glycoproteins and with wide operational pH range. Microchim Acta 185(12):565. https://doi.org/10.1007/s00604-018-3092-z

    Article  CAS  Google Scholar 

  9. Jin S, Liu L, Zhou P (2018) Amorphous titania modified with boric acid for selective capture of glycoproteins. Microchim Acta 185(6):308. https://doi.org/10.1007/s00604-018-2824-4

    Article  CAS  Google Scholar 

  10. Guo ZY, Hai X, Wang YT, Shu Y, Chen XW, Wang JH (2018) Core-corona magnetic nanospheres functionalized with zwitterionic polymer ionic liquid for highly selective isolation of glycoprotein. Biomacromolecules 19(1):53–61. https://doi.org/10.1021/acs.biomac.7b01231

    Article  CAS  PubMed  Google Scholar 

  11. Zou X, Jie J, Yang B (2016) A facile and cheap synthesis of zwitterion coatings of the CS@PGMA@IDA nanomaterial for highly specific enrichment of glycopeptides. Chem Commun 52(15):3251–3253. https://doi.org/10.1039/C5CC10416E

    Article  CAS  Google Scholar 

  12. Guo P-F, Zhang D-D, Guo Z-Y, Wang X-M, Wang M-M, Chen M-L, Wang J-H (2018) PEGylated titanate nanosheets: hydrophilic monolayers with a superior capacity for the selective isolation of immunoglobulin G. Nanoscale 10(26):12535–12542. https://doi.org/10.1039/c8nr02995d

    Article  CAS  PubMed  Google Scholar 

  13. Dong L, Feng S, Li S, Song P, Wang J (2015) Preparation of concanavalin A-chelating magnetic nanoparticles for selective enrichment of glycoproteins. Anal Chem 87(13):6849–6853. https://doi.org/10.1021/acs.analchem.5b01184

    Article  CAS  PubMed  Google Scholar 

  14. Li D, Chen Y, Liu Z (2015) Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev 44(22):8097–8123. https://doi.org/10.1039/c5cs00013k

    Article  CAS  PubMed  Google Scholar 

  15. Zhang L, Xu Y, Yao H, Xie L, Yao J, Lu H, Yang P (2009) Boronic acid functionalized core-satellite composite nanoparticles for advanced enrichment of glycopeptides and glycoproteins. Chem Eur J 15(39):10158–10166, S10158/10151-S10158/10115. https://doi.org/10.1002/chem.200901347

    Article  CAS  PubMed  Google Scholar 

  16. Lin Z, Sun L, Liu W, Xia Z, Yang H, Chen G (2014) Synthesis of boronic acid-functionalized molecularly imprinted silica nanoparticles for glycoprotein recognition and enrichment. J Mater Chem B 2(6):637–643. https://doi.org/10.1039/c3tb21520b

    Article  CAS  PubMed  Google Scholar 

  17. Jiang L, Bagán H, Kamra T, Zhou T, Ye L (2016) Nanohybrid polymer brushes on silica for bioseparation. J Mater Chem B 4(19):3247–3256. https://doi.org/10.1039/c6tb00241b

    Article  CAS  PubMed  Google Scholar 

  18. Zhang X, Wang J, He X, Chen L, Zhang Y (2015) Tailor-made boronic acid functionalized magnetic nanoparticles with a tunable polymer shell-assisted for the selective enrichment of glycoproteins/glycopeptides. ACS Appl Mater Interfaces 7(44):24576–24584. https://doi.org/10.1021/acsami.5b06445

    Article  CAS  PubMed  Google Scholar 

  19. Zhang W, Liu W, Li P, Xiao H, Wang H, Tang B (2014) A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity. Angew Chem Int Ed 53(46):12489–12493. https://doi.org/10.1002/anie.201405634

  20. Li X-G, Zhang F, Gao Y, Zhou Q-M, Zhao Y, Li Y, Huo J-Z, Zhao X-J (2016) Facile synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins. Biosens Bioelectron 86:270–276. https://doi.org/10.1016/j.bios.2016.06.054

    Article  CAS  PubMed  Google Scholar 

  21. He J, Ji W, Yao L, Wang Y, Khezri B, Webster RD, Chen H (2014) Strategy for nano-catalysis in a fixed-bed system. Adv Mater 26(24):4151–4155. https://doi.org/10.1002/adma.201306157

    Article  CAS  PubMed  Google Scholar 

  22. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389. https://doi.org/10.1002/adma.200390087

    Article  CAS  Google Scholar 

  23. Gong S, Cheng WL (2017) One-dimensional nanomaterials for soft electronics. Adv Electron Mater 3(3):1600314. Artn 1600314 https://doi.org/10.1002/Aelm.201600314

  24. Zhang M, Zheng J, Wang J, Xu J, Hayat T, Alharbi NS (2019) Direct electrochemistry of cytochrome c immobilized on one dimensional au nanoparticles functionalized magnetic N-doped carbon nanotubes and its application for the detection of H2O2. Sensors Actuators B Chem 282:85–95. https://doi.org/10.1016/j.snb.2018.11.005

    Article  CAS  Google Scholar 

  25. Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16 (14):1151-1170. https://doi.org/10.1002/adma.200400719

  26. Liang D, Hsiao BS, Chu B (2007) Functional electrospun nanofibrous scaffolds for biomedical applications. Adv Drug Deliv Rev 59(14):1392–1412. https://doi.org/10.1016/j.addr.2007.04.021

  27. Sun W, Lu X, Tong Y, Lei J, Nie G, Wang C (2014) A one-pot synthesis of a highly dispersed palladium/polypyrrole/polyacrylonitrile nanofiber membrane and its recyclable catalysis in hydrogen generation from ammonia borane. J Mater Chem A 2(19):6740–6746. https://doi.org/10.1039/c3ta15441f

    Article  CAS  Google Scholar 

  28. Asiabi M, Mehdinia A, Jabbari A (2017) Spider-web-like chitosan/MIL-68(Al) composite nanofibers for high-efficient solid phase extraction of Pb (II) and cd(II). Microchim Acta 184(11):4495–4501. https://doi.org/10.1007/s00604-017-2473-z

    Article  CAS  Google Scholar 

  29. Lyu YP, Wu YS, Wang TP, Lee CL, Chung MY, Lo CT (2018) Hydrothermal and plasma nitrided electrospun carbon nanofibers for amperometric sensing of hydrogen peroxide. Microchim Acta 185(8):371. https://doi.org/10.1007/s00604-018-2915-2

    Article  CAS  Google Scholar 

  30. Mehrani Z, Ebrahimzadeh H, Aliakbar AR, Asgharinezhad AA (2018) A poly(4-nitroaniline)/poly(vinyl alcohol) electrospun nanofiber as an efficient nanosorbent for solid phase microextraction of diazinon and chlorpyrifos from water and juice samples. Microchim Acta 185(8):384. https://doi.org/10.1007/s00604-018-2911-6

    Article  CAS  Google Scholar 

  31. Fu Q, Wang X, Si Y, Liu L, Yu J, Ding B (2016) Scalable fabrication of electrospun Nanofibrous membranes functionalized with citric acid for high-performance protein adsorption. ACS Appl Mater Interfaces 8(18):11819–11829. https://doi.org/10.1021/acsami.6b03107

    Article  CAS  PubMed  Google Scholar 

  32. Fu Q, Si Y, Duan C, Yan Z, Liu L, Yu J, Ding B (2019) Highly carboxylated, cellular structured, and underwater superelastic nanofibrous aerogels for efficient protein separation. Adv Funct Mater 29:1808234. https://doi.org/10.1002/adfm.201808234

    Article  CAS  Google Scholar 

  33. Mascolo MC, Pei Y, Ring TA (2013) Room temperature co-precipitation synthesis of magnetite nanoparticles in a large pH window with different bases. Materials 6(12):5549–5567. https://doi.org/10.3390/ma6125549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Zhuang Y, Shen H, Chen X, Wang J (2017) A super hydrophilic silsesquioxane-based composite for highly selective adsorption of glycoproteins. Microchim Acta 184(4):1037–1044. https://doi.org/10.1007/s00604-017-2100-z

    Article  CAS  Google Scholar 

  35. Nisbet AD, Saundry RH, Moir AJ, Fothergill LA, Fothergill JE (1981) The complete amino-acid sequence of hen ovalbumin. Eur J Biochem 115(2):335–345. https://doi.org/10.1111/j.1432-1033.1981.tb05243.x

  36. Yang T, Yang H, Zhen SJ, Huang CZ (2015) Hydrogen-bond-mediated in situ fabrication of AgNPs/agar/PAN electrospun nanofibers as reproducible SERS substrates. ACS Appl Mater Interfaces 7(3):1586–1594. https://doi.org/10.1021/am507010q

    Article  CAS  PubMed  Google Scholar 

  37. Govindaraj P, Kandasubramanian B, Kodam KM (2014) Molecular interactions and antimicrobial activity of curcumin (Curcuma longa) loaded polyacrylonitrile films. Mater Chem Phys 147(3):934–941. https://doi.org/10.1016/j.matchemphys.2014.06.040

    Article  CAS  Google Scholar 

  38. Mislovicova D, Katrlik J, Paulovicova E, Gemeiner P, Tkac J (2012) Comparison of three distinct ELLA protocols for determination of apparent affinity constants between con a and glycoproteins. Colloids Surf B 94:163–169. https://doi.org/10.1016/j.colsurfb.2012.01.036

    Article  CAS  Google Scholar 

  39. Lechevalier V, Croguennec T, Pezennec S, Guérin-Dubiard C, Pasco M, Nau F (2003) Ovalbumin, Ovotransferrin, lysozyme: three model proteins for structural modifications at the air−water Interface. J Agric Food Chem 51(21):6354–6361. https://doi.org/10.1021/jf034184n

    Article  CAS  PubMed  Google Scholar 

  40. Lapinska U, Saar KL, Yates EV, Herling TW, Muller T, Challa PK, Dobson CM, Knowles TPJ (2017) Gradient-free determination of isoelectric points of proteins on chip. Phys Chem Chem Phys 19(34):23060–23067. https://doi.org/10.1039/c7cp01503h

    Article  CAS  PubMed  Google Scholar 

  41. Yang F, Lin Z, He X, Chen L, Zhang Y (2011) Synthesis and application of a macroporous boronate affinity monolithic column using a metal-organic gel as a porogenic template for the specific capture of glycoproteins. J Chromatogr A 1218(51):9194–9201. https://doi.org/10.1016/j.chroma.2011.10.049

Download references

Acknowledgements

We greatly acknowledge financial support from the National Natural Science Foundation of China (21703102), the Natural Science Foundation of Jiangsu Province, China (BK20170976), China Postdoctoral Science Foundation funded project (2017M621732), and Jiangsu Planned Projects for Postdoctoral Research Funds (1701095C).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongyan Li or Cheng Yao.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 853 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Gu, Y., Xu, X. et al. Electrospun polyacrylonitrile fibers with and without magnetic nanoparticles for selective and efficient separation of glycoproteins. Microchim Acta 186, 542 (2019). https://doi.org/10.1007/s00604-019-3655-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3655-7

Keywords

Navigation