Skip to main content
Log in

An aptasensor for troponin I based on the aggregation-induced electrochemiluminescence of nanoparticles prepared from a cyclometallated iridium(III) complex and poly(4-vinylpyridine-co-styrene) deposited on nitrogen-doped graphene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultrasensitive electrochemiluminescence (ECL) disposable aptamer sensor (aptasensor) is presented for detection of myocardial infarction biomarker by quantification of troponin I in blood serum. A screen-printed electrode was modified with (a) aptamer-modified gold nanoparticles, (b) cyclometallated iridium(III)-poly-4-vinylpyridine nanoparticles, and (c) nitrogen-doped graphene in order to increase the loading capacity and conductivity of the aptasensor. If the aptasensor is exposed to troponin I, it will bind to the aptamer and desorb the aptamer from gold nanoparticles and the surface of the electrode. This generates an enhancement in ECL emission depending on troponin I concentration. ECL emission is strongly improved by aggregation-induced phenomenon, which is caused by inhibition of the water and oxygen quenching effect on the iridium complex ECL in aqueous media. Under optimum conditions, the aptasensor has a wide dynamic range that extends from 0.1 pM to 10 nM, with a 20 fM detection limit (S/N = 3) and a relative standard deviation of 3.1%. The ECL aptasensor was successfully applied to 20 individual human serum for the detection of troponin I biomarker.

Schematic presentation of electrochemiluminescence aptamer assay fabrication for detection of Troponin I. Carbon screen printed electrode (CSPE) was modified with nitrogen doped graphene (NG), gold nanoparticles (AuNPs), cyclometallated iridium(III)-polyvinylpyridine polymer nanoparticles, ionic liquid and bovine serum albumin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sheng Q, Qiao X, Zhou M, Zheng J (2017) Recent progress in electrochemical sensing of cardiac troponin by using nanomaterial-induced signal amplification. Microchim Acta 184(6):1573–1585. https://doi.org/10.1007/s00604-017-2219-y

    Article  CAS  Google Scholar 

  2. Fathil M, Arshad MM, Gopinath SC, Hashim U, Adzhri R, Ayub R, Ruslinda A, Nuzaihan M, Azman A, Zaki M (2015) Diagnostics on acute myocardial infarction: cardiac troponin biomarkers. Biosens Bioelectron 70:209–220. https://doi.org/10.1016/j.bios.2015.03.037

    Article  CAS  PubMed  Google Scholar 

  3. Wu AH, Apple FS, Gibler WB, Jesse RL, Warshaw MM, Valdes R (1999) National Academy of Clinical Biochemistry standards of laboratory practice: recommendations for the use of cardiac markers in coronary artery diseases. Clin Chem 45(7):1104–1121

    CAS  PubMed  Google Scholar 

  4. Schneck NA, Phinney KW, Lee SB, Lowenthal MS (2018) Quantification of cardiac troponin I in human plasma by immunoaffinity enrichment and targeted mass spectrometry. Anal Bioanal Chem 410(11):2805–2813. https://doi.org/10.1007/s00216-018-0960-7

    Article  CAS  PubMed  Google Scholar 

  5. Li Y, Dai W, Lv X, Deng Y (2018) Aptamer-based rolling circle amplification coupled with graphene oxide-based fluorescence resonance energy transfer for sensitive detection of cardiac troponin I. Anal Methods 10(15):1767–1773. https://doi.org/10.1039/C8AY00309B

    Article  CAS  Google Scholar 

  6. Chon H, Lee S, Yoon S-Y, Lee EK, Chang S-I, Choo J (2014) SERS-based competitive immunoassay of troponin I and CK-MB markers for early diagnosis of acute myocardial infarction. Chem Commun 50(9):1058–1060. https://doi.org/10.1039/C3CC47850E

    Article  CAS  Google Scholar 

  7. Miao W (2008) Electrogenerated chemiluminescence and its biorelated applications. Chem Rev 108(7):2506–2553. https://doi.org/10.1021/cr068083a

    Article  CAS  PubMed  Google Scholar 

  8. Li S, Liu C, Han B, Luo J, Yin G (2017) An electrochemiluminescence aptasensor switch for aldicarb recognition via ruthenium complex-modified dendrimers on multiwalled carbon nanotubes. Microchim Acta 184(6):1669–1675. https://doi.org/10.1007/s00604-017-2177-4

    Article  CAS  Google Scholar 

  9. Carrara S, Stringer B, Shokouhi A, Ramkissoon P, Agugiaro J, Wilson DJD, Barnard PJ, Hogan CF (2018) Unusually strong Electrochemiluminescence from iridium-based redox polymers immobilized as thin layers or polymer nanoparticles. ACS Appl Mater Interfaces 10(43):37251–37257. https://doi.org/10.1021/acsami.8b12995

    Article  CAS  PubMed  Google Scholar 

  10. Moghaddam MR, Carrara S, Hogan CF (2019) Multi-colour bipolar electrochemiluminescence for heavy metal ion detection. Chem Commun 55(8):1024–1027. https://doi.org/10.1039/C8CC08472F

    Article  CAS  Google Scholar 

  11. Lu L, Wu J, Li M, Kang T, Cheng S (2015) Detection of DNA damage by exploiting the distance dependence of the electrochemiluminescence energy transfer between quantum dots and gold nanoparticles. Microchim Acta 182(1):233–239. https://doi.org/10.1007/s00604-014-1322-6

    Article  CAS  Google Scholar 

  12. Liu Y, Yu J (2016) Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review. Microchim Acta 183(1):1–19. https://doi.org/10.1007/s00604-015-1623-4

    Article  CAS  Google Scholar 

  13. Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181(5–6):479–491. https://doi.org/10.1007/s00604-013-1156-7

    Article  CAS  Google Scholar 

  14. Xu Q, Wang G, Zhang M, Xu G, Lin J, Luo X (2018) Aptamer based label free thrombin assay based on the use of silver nanoparticles incorporated into self-polymerized dopamine. Microchim Acta 185(5):253. https://doi.org/10.1007/s00604-018-2787-5

    Article  CAS  Google Scholar 

  15. Amini A, Hosseini-Golgoo SM (2012) Rapid recognition of airborne combustible molecules with an operating temperature-modulated gas sensor. Sens Lett 10(3–4):821–825. https://doi.org/10.1166/sl.2012.2571

    Article  CAS  Google Scholar 

  16. Jafari A, Amini A (2019) Lactic acid gas sensor based on polypyrrole thin film. Mater Lett 236:175–178. https://doi.org/10.1016/j.matlet.2018.10.066

    Article  CAS  Google Scholar 

  17. Hossein-Babaei F, Masoumi S, Noori A (2018) Linking thermoelectric generation in polycrystalline semiconductors to grain boundary effects sets a platform for novel Seebeck effect-based sensors. J Mater Chem A 6(22):10370–10378. https://doi.org/10.1039/C8TA02732C

  18. Hossein-Babaei F, Moghadam S, Masoumi S (2015) Forming ohmic Ag/SnO2 contacts. Mater Lett 141:141–144. https://doi.org/10.1016/j.matlet.2014.11.046

  19. Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798. https://doi.org/10.1021/nn100315s

    Article  CAS  PubMed  Google Scholar 

  20. Jiao XX, Chen JR, Zhang XY, Luo HQ, Li NB (2013) A chronocoulometric aptasensor based on gold nanoparticles as a signal amplification strategy for detection of thrombin. Anal Biochem 441(2):95–100. https://doi.org/10.1016/j.ab.2013.07.023

    Article  CAS  PubMed  Google Scholar 

  21. Moghaddam MR, Norouzi P, Ghasemi JB (2018) Simultaneous sensitive determination of benzenediol isomers using multiwall carbon nanotube–ionic liquid modified carbon paste electrode by a combination of artificial neural network and fast Fourier transform admittance voltammetry. New J Chem 42(8):6479–6487. https://doi.org/10.1039/C7NJ04073C

    Article  CAS  Google Scholar 

  22. Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110(32):15700–15707. https://doi.org/10.1021/jp061667w

    Article  CAS  PubMed  Google Scholar 

  23. Pur MRK, Hosseini M, Faridbod F, Ganjali MR (2017) Highly sensitive label-free electrochemiluminescence aptasensor for early detection of myoglobin, a biomarker for myocardial infarction. Microchim Acta 184(9):3529–3537. https://doi.org/10.1007/s00604-017-2385-y

    Article  CAS  Google Scholar 

  24. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217. https://doi.org/10.1039/B514191E

    Article  CAS  PubMed  Google Scholar 

  25. Wei H, Li B, Li J, Wang E, Dong S (2007) Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probes. Chem Commun (36):3735–3737. https://doi.org/10.1039/B707642H

  26. Allibai Mohanan VM, Kacheri Kunnummal A, Biju VMN (2016) Electrochemical sensing of hydroxylamine using a wax impregnated graphite electrode modified with a nanocomposite consisting of ferric oxide and copper hexacyanoferrate. Microchim Acta 183(6):2013–2021. https://doi.org/10.1007/s00604-016-1839-y

    Article  CAS  Google Scholar 

  27. Haghighatbin MA, Laird SE, Hogan CF (2018) Electrochemiluminescence of cyclometalated iridium (III) complexes. Curr Opin Electrochem 7:216–223. https://doi.org/10.1016/j.coelec.2018.03.026

  28. Kim JI, Shin I-S, Kim H, Lee J-K (2005) Efficient electrogenerated chemiluminescence from cyclometalated iridium (III) complexes. J Am Chem Soc 127(6):1614–1615. https://doi.org/10.1021/ja043721x

    Article  CAS  PubMed  Google Scholar 

  29. Jo H, Her J, Lee H, Shim Y-B, Ban C (2017) Highly sensitive amperometric detection of cardiac troponin I using sandwich aptamers and screen-printed carbon electrodes. Talanta 165:442–448. https://doi.org/10.1016/j.talanta.2016.12.091

    Article  CAS  PubMed  Google Scholar 

  30. Lopa NS, Rahman MM, Ahmed F, Ryu T, Sutradhar SC, Lei J, Kim J, Kim DH, Lee YH, Kim W (2019) Simple, low-cost, sensitive and label-free aptasensor for the detection of cardiac troponin I based on a gold nanoparticles modified titanium foil. Biosens Bioelectron 126:381–388. https://doi.org/10.1016/j.bios.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  31. Xu Z, Dong Y, Li J, Yuan R (2015) A ferrocene-switched electrochemiluminescence “off–on” strategy for the sensitive detection of cardiac troponin I based on target transduction and a DNA walking machine. Chem Commun 51(76):14369–14372. https://doi.org/10.1039/C5CC04745E

    Article  CAS  Google Scholar 

  32. Dorraj GS, Rassaee MJ, Latifi AM, Pishgoo B, Tavallaei M (2015) Selection of DNA aptamers against human cardiac troponin I for colorimetric sensor based dot blot application. J Biotechnol 208:80–86. https://doi.org/10.1016/j.jbiotec.2015.05.002

    Article  CAS  PubMed  Google Scholar 

  33. Wu W-Y, Bian Z-P, Wang W, Wang W, Zhu J-J (2010) PDMS gold nanoparticle composite film-based silver enhanced colorimetric detection of cardiac troponin I. Sensors Actuators B Chem 147(1):298–303. https://doi.org/10.1016/j.snb.2010.03.027

    Article  CAS  Google Scholar 

  34. Chekin F, Vasilescu A, Jijie R, Singh SK, Kurungot S, Iancu M, Badea G, Boukherroub R, Szunerits S (2018) Sensitive electrochemical detection of cardiac troponin I in serum and saliva by nitrogen-doped porous reduced graphene oxide electrode. Sensors Actuators B Chem 262:180–187. https://doi.org/10.1016/j.snb.2018.01.215

    Article  CAS  Google Scholar 

  35. Fan D, Bao C, Khan MS, Wang C, Zhang Y, Liu Q, Zhang X, Wei Q (2018) A novel label-free photoelectrochemical sensor based on N,S-GQDs and CdS co-sensitized hierarchical Zn2SnO4 cube for detection of cardiac troponin I. Biosens Bioelectron 106:14–20. https://doi.org/10.1016/j.bios.2018.01.050

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Amini.

Ethics declarations

There are no conflicts to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saremi, M., Amini, A. & Heydari, H. An aptasensor for troponin I based on the aggregation-induced electrochemiluminescence of nanoparticles prepared from a cyclometallated iridium(III) complex and poly(4-vinylpyridine-co-styrene) deposited on nitrogen-doped graphene. Microchim Acta 186, 254 (2019). https://doi.org/10.1007/s00604-019-3352-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3352-6

Keywords

Navigation