Skip to main content
Log in

A dual-model strategy for fluorometric determination of ascorbic acid and of ascorbic acid oxidase activity by using DNA-templated gold-silver nanoclusters

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Methods are described for the fluorometric and colorimetric determination of ascorbic acid (AA) and the activity of ascorbic acid oxidase (AA-Ox). The method for AA is based on AA-induced growth and aggregation of DNA-templated gold/silver nanoclusters (DNA-Au/Ag NC), which is accompanied by quenching of fluorescence emission at 605 nm upon 260 nm excitation and a visible color change of the solution from colorless transparent to yellow. The determination of the activity of AA-Ox is based on the finding that it catalyzes the oxidation of AA which results in the inhibition of growth and aggregation. AA can be determined with a 0.6 μmol·L−1 detection limit over the 5 to 150 μmol·L−1 concentration range. AA-Ox can be determined with a 0.0048 U·mL−1 detection limit over the 0.01 to 0.20 U·mL−1 range.

Schematic of a novel fluorometric and colorimetric platform for determination of ascorbic acid and ascorbic acid oxidase activity based on the use of DNA-templated gold-silver nanoclusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Ping J, Wu J, Wang Y, Ying Y (2012) Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed grapheme electrode. Biosens Bioelectron 34:70–76

    Article  CAS  PubMed  Google Scholar 

  2. Yokoi T, Otani T, Ishii K (2018) In vivo fluorescence bioimaging of ascorbic acid in mice: development of an efficient probe consisting of phthalocyanine, TEMPO, and albumin. Sci Rep 8:1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paixao TR, Bertotti M (2008) FIA determination of ascorbic acid at low potential using a ruthenium oxide hexacyanoferrate modified carbon electrode. J Pharm Biomed Anal 46:528–533

    Article  CAS  PubMed  Google Scholar 

  4. Lachapelle MY, Drouin G (2010) Inactivation dates of the human and guinea pig vitamin C genes. Genetica 139:199–207

    Article  CAS  PubMed  Google Scholar 

  5. Liu K, Yu P, Lin Y, Wang Y, Ohsaka T, Mao L (2013) Online electrochemical monitoring of dynamic change of hippocampal ascorbate: toward a platform for in vivo evaluation of antioxidant neuroprotective efficiency against cerebral ischemia injury. Anal Chem 85:9947–9954

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Ma L, Zhang Y (2015) Electrodeposition of platinum nanosheets on C60 decorated glassy carbon electrode as a stable electrochemical biosensor for simultaneous detection of ascorbic acid, dopamine and uric acid. Electrochim Acta 177:118–127

    Article  CAS  Google Scholar 

  7. Oezyuerek M, Gueclue K, Bektasoglu B, Apak R (2007) Spectrophotometric determination of ascorbic acid by the modified CUPRAC method with extractives eparation of flavonoids-La (III) complexes. Anal Chim Acta 588:88–95

    Article  CAS  Google Scholar 

  8. Khan A, Khan MI, Iqbal Z, Shah Y, Ahmad L, Nazir S, Watson DG, Nasir JA, Khan A, Ismail (2011) A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection. Talanta 84:789–801

    Article  CAS  PubMed  Google Scholar 

  9. Falkova MT, Bulatov Andrey V, Pushina MO, Ekimov AA, Alekseeva GM, Moskvin LN (2015) Multicommutated stepwise injection determination of ascorbic acid in medicinal plants and food samples by capillary zone electrophoresis ultraviolet detection. Talanta 133:82–87

    Article  CAS  PubMed  Google Scholar 

  10. Kim WS, Dahlgren RL, Moroz LL, Sweedler JV (2002) Ascorbic acid assays of individual neurons and neuronal tissues using capillary electrophoresis with laser-induced fluorescence detection. Anal Chem 74:5614–5620

    Article  CAS  PubMed  Google Scholar 

  11. Meng HJ, Yang DQ, Tu YF, Yan JL (2017) Turn-on fluorescence detection of ascorbic acid with gold nanolcusters. Talanta 165:346–350

    Article  CAS  PubMed  Google Scholar 

  12. Tian T, Zhong YP, Deng C, Wang H, He Y, Ge YL, Song GW (2017) Brightly near-infrared to blue emission tunable silver-carbon dot nanohybrid for sensing of ascorbic acid and construction of logic gate. Talanta 162:135–142

    Article  CAS  PubMed  Google Scholar 

  13. Hu LZ, Deng L, Alsaiari S, Zhang DY, Khasha NM (2014) "Light-on" sensing of antioxidants using gold nanoclusters. Anal Chem 86:4989–4994

    Article  CAS  PubMed  Google Scholar 

  14. Achadu OJ, Nyokong T (2017) In situ one-pot synthesis of graphitic carbon nitride quantum dots and its 2,2,6,6-tetramethyl (piperidin-1-yl) oxyl derivatives as fluorescent nanosensors for ascorbic acid. Anal Chim Acta 991:113–126

    Article  CAS  PubMed  Google Scholar 

  15. Gong X, Li Z, Hu Q, Zhou R, Shuang S, Dong C (2017) N,S,P Co-Doped Carbon Nanodot Fabricated from Waste Microorganism and Its Application for Label-Free Recognition of Manganese (VII) and l-Ascorbic Acid and Logic Gate Operation. ACS Appl Mater Interfaces 9:38761–38772

    Article  CAS  PubMed  Google Scholar 

  16. Mo Q, Liu F, Gao J, Zhao M, Shao N (2018) Fluorescent sensing of ascorbic acid based on iodine induced oxidative etching and aggregation of lysozyme-templated silver nanoclusters. Anal Chim Acta 2018(1003):49–55

    Article  CAS  Google Scholar 

  17. Zhao P, He KY, Han YT, Zhang Z, Yu MZ, Wang HH, Huang Y, Nie Z, Yao SZ (2015) Near-infrared dual-emission quantum dots-gold nanoclusters nanohybrid via co-template synthesis for ratiometric fluorescent detection and bioimaging of ascorbic acid in vitro and in vivo. Anal Chem 87:9998–10005

    Article  CAS  PubMed  Google Scholar 

  18. Yue D, Zhao D, Zhang J, Zhang L, Jiang K, Zhang X, Cui YJ, Yang Y, Chen BL, Qian GD (2017) A luminescent cerium metal-organic framework for the turn-on sensing of ascorbic acid. Chem Commun 53:11221–11224

    Article  CAS  Google Scholar 

  19. Fong JFY, Chin SF, Ng SM (2016) A unique "turn-on" fluorescence signaling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe. Biosens Bioelectron 85:844–852

    Article  CAS  PubMed  Google Scholar 

  20. Wang G, Chen Z, Chen L (2011) Mesoporous silica-coated gold nanorods: towards sensitive colorimetric sensing of ascorbic acid via target-induced silver overcoating. Nanoscale 3:1756–1759

    Article  CAS  PubMed  Google Scholar 

  21. Liu YH, Wei ZN, Duan WX, Ren CL, Wu J, Liu D, Chen HL (2018) A dual-mode sensor for colorimetric and “turn-on” fluorescent detection of ascorbic acid. Dyes Pigments 149:491–497

    Article  CAS  Google Scholar 

  22. Liu SG, Han L, Na L, Na X, Ju YJ, Li NB, Luo HQ (2018) A fluorescence and colorimetric dual-mode assay of alkaline phosphatase activity via destroying oxidase-like CoOOH nanoflakes. J Mater Chem B 6:2843–2850

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Zhu JJ, Xu K (2014) Fluorescent metal nanoclusters: from synthesis to applications. TrAC Trends Anal Chem 58:90–98

    Article  CAS  Google Scholar 

  24. Zhang N, Si YM, Sun ZZ, Chen LJ, Li R, Qiao YC, Wang H (2014) Rapid, selective, and ultrasensitive fluorimetric analysis of mercury and copper levels in blood using bimetallic gold-silver nanoclusters with "silver effect"-enhanced red fluorescence. Anal Chem 86:11714–11721

    Article  CAS  PubMed  Google Scholar 

  25. Yu J, Choi S, Dickson RM (2009) Shuttle-based fluorogenic silver-cluster biolabels. Angew Chem 121:324–326

    Article  Google Scholar 

  26. Xie J, Zheng Y, Ying JY (2010) Highly selective and ultrasensitive detection of Hg(2+) based on fluorescence quenching of Au nanoclusters by Hg(2+)-Au(+) interactions. Chem Commun 46:961–963

    Article  CAS  Google Scholar 

  27. Liu H, Zhang X, Wu X, Jiang L, Burda C, Zhu JJ (2011) Rapid sonochemical synthesis of highly luminescent non-toxic Au NCs and Au@Ag NC and Cu (II) sensing. Chem Commun 47:4237–4239

    Article  CAS  Google Scholar 

  28. Wang CX, Xu L, Xu XW, Cheng H, Sun HC, Lin Q, Zhang C (2014) Near infrared Ag/Au alloy nanoclusters: tunable photoluminescence and cellular imaging. J Colloid Interface Sci 416:274–279

    Article  CAS  PubMed  Google Scholar 

  29. Li ZH, Liu RY, Xing GF, Wang T, Liu SY (2017) A novel fluorometric and colorimetric sensor for iodide determination using DNA-templated gold/silver nanoclusters. Biosens Bioelectron 96:44–48

    Article  CAS  PubMed  Google Scholar 

  30. Dou Y, Yang XM (2013) Novel high-sensitive fluorescent detection of deoxyribonuclease I based on DNA-templated gold/silver nanoclusters. Anal Chim Acta 784:53–58

    Article  CAS  PubMed  Google Scholar 

  31. Chen WY, Lan GY, Chang HT (2011) Use of fluorescent DNA-templated gold/silver nanoclusters for the detection of sulfide ions. Anal Chem 83:9450–9455

    Article  CAS  PubMed  Google Scholar 

  32. Richards CI, Choi S, Hsiang JC, Antoku Y, Vosch T, Bongiorno A, Tzeng YL, Dickson RM (2008) Oligonucleotide-stabilized ag nanocluster fluorophores. J Am Chem Soc 130:5038–5039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jaswinder S, Rocha RC, Phipps ML, Yeh HC, Balatsky KA, Vu DM, Shreve AP, Werner JH, Martinez JS (2012) A DNA-templated fluorescent silver nanocluster with enhanced stability. Nanoscale 4:4107–4110

    Article  CAS  Google Scholar 

  34. Qu F, Li NB, Luo HQ (2012) Polyethyleneimine-templated Ag nanoclusters: a new fluorescent and colorimetric platform for sensitive and selective sensing halide ions and high disturbance-tolerant recognitions of iodide and bromide in coexistence with chloride under condition of high ionic strength. Anal Chem 84:10373–10379

    Article  CAS  PubMed  Google Scholar 

  35. Li R, Xin S, Tao CC, Jin X, Li HB (2017) Cotton ascorbate oxidase promotes cell growth in cultured tobacco bright Yellow-2 cells through generation of Apoplast oxidation. Int J Mol Sci 18:1346

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for Central Universities of China (N152004002) and the Doctoral Scientific Research Foundation of Liao Ning Province (L201501145).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Siyu Liu or Shu Pang.

Ethics declarations

The author (s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 1.14 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Pang, S. A dual-model strategy for fluorometric determination of ascorbic acid and of ascorbic acid oxidase activity by using DNA-templated gold-silver nanoclusters. Microchim Acta 185, 426 (2018). https://doi.org/10.1007/s00604-018-2954-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2954-8

Keywords

Navigation