Skip to main content
Log in

One-step synthesis of a Methylene Blue@ZIF-8-reduced graphene oxide nanocomposite and its application to electrochemical sensing of rutin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors demonstrate the exploitation of reduced graphene oxide (RGO) as a template for immobilizing zeolitic imidazolate framework-8 (ZIF-8) crystals loaded with the electrochemical probe Methylene Blue (MB). The framework was deposited on the surface of RGO in a one-pot process. Transmission electron microscopy, scanning electron microscopy and X-ray diffraction were employed to characterize the nanocomposite. The electrochemical behavior of rutin at a glassy carbon electrode (GCE) modified with the nanocomposite was investigated by cyclic voltammetry and differential pulse voltammetry. The modified GCE displays high electrocatalytic activity toward rutin oxidation at a relatively low working potential (0.4 V vs. Ag/AgCl). Under the optimal conditions, the sensor has an amperometric response that is linear in the 0.1 to 100 μM rutin concentration range, with a 20 nM detection limit (at an S/N ratio of 3). The method was successfully applied to the determination of rutin in tablets and urine samples.

The zeolitic imidazolate framework ZIF-8 was loaded with Methylene Blue and deposited on the surface of reduced graphene oxide. A glassy carbon electrode was modified with the nanocomposite and then used for the determination of rutin with a 20 nM detection limit and a linear range from 0.1 to 100 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Guo R, Wei P (2008) Studies on the antioxidant effect of rutin in the microenvironment of cationic micelles. Microchim Acta 161:233–239. https://doi.org/10.1007/s00604-007-0888-7

    Article  CAS  Google Scholar 

  2. Ishii K, Furuta T, Kasuya Y (2001) Determination of rutin in human plasma by high-performance liquid chromatography utilizing solid-phase extraction and ultraviolet detection. J Chromatogr B 759:161–168

    Article  CAS  Google Scholar 

  3. Hassan HNA, Barsoum BN, Habib IHI (1999) Simultaneous spectrophotometric determination of rutin, quercetin and ascorbic acid in drugs using a Kalman filter approach. J Pharm Biomed Anal 20:315–320. https://doi.org/10.1016/S0731-7085(99)00048-5

    Article  CAS  PubMed  Google Scholar 

  4. Vinas P, Lopez-Erroz C, Marin-Hemandez JJ, Hernandez-Cordoba M (2000) Determination of phenols in wines by liquid chromatography with photodiode array and fluorescence detection. J Chromatogr A 871:85–93. https://doi.org/10.1016/S0021-9673(99)01087-0

    Article  CAS  PubMed  Google Scholar 

  5. He C, Cui H, Zhao X, Zhao H, Zhao G (1999) Determination of Rutin by flow injection with inhibited Chemiluminescence detection. Anal Lett 32:2751–2759. https://doi.org/10.1080/00032719908543003

    Article  CAS  Google Scholar 

  6. Legnerova Z, Satinsky D, Solich P (2003) Using on-line solid phase extraction for simultaneous determination of ascorbic acid and rutin trihydrate by sequential injection analysi. Anal Chim Acta 497:165–174. https://doi.org/10.1016/j.aca.2003.07.007

    Article  CAS  Google Scholar 

  7. Kang J, Lu X, Zeng H, Liu H, Lu B (2002) Investigation on the electrochemistry of rutin and its analytical application. Anal Lett 35:677–686. https://doi.org/10.1081/AL-120003169

    Article  CAS  Google Scholar 

  8. Zhou J, Zhang K, Liu J, Song G, Ye B (2012) A supersensitive sensor for rutin detection based on multi-walled carbon nanotubes and gold nanoparticles modified carbon paste electrodes. Anal Methods 4:1350–1356. https://doi.org/10.1039/c2ay05930d

    Article  CAS  Google Scholar 

  9. Wu Y, Hu CX, Huang M, Song N, Hu W (2015) Highly enhanced electrochemical responses of rutin by nanostructured Fe2O3/RGO composites. Ionics 21:1427–1434. https://doi.org/10.1007/s11581-014-1310-1

    Article  CAS  Google Scholar 

  10. Li J, Sculley J, Zhou H (2011) Metal–organic frameworks for separations. Chem Rev 112:869–932

    Article  CAS  PubMed  Google Scholar 

  11. Mason JA, Veenstra M, Long JR (2014) Evaluating metal–organic frameworks for natural gas storage. Chem Sci 5:32–51. https://doi.org/10.1039/C3SC52633J

    Article  CAS  Google Scholar 

  12. Wang C, Liu D, Lin W (2013) Metal-organic frameworks as a tunable platform for designing functional molecular materials. J Am Chem Soc 135:13222–13234. https://doi.org/10.1021/ja308229p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang L, Han Y, Feng X, Zhou J, Qi P, Wang B (2016) Metal–organic frameworks for energy storage: batteries and supercapacitors. Coordin Chem Rev 307:361–381. https://doi.org/10.1016/j.ccr.2015.09.002

    Article  CAS  Google Scholar 

  14. Kreno L, Leong K, Farha OK, Allendorf M, Duyne RPV, Hupp JT (2012) Metal–organic framework materials as chemical sensors. Chem Soc Rev 112:1105–1125

    Article  CAS  Google Scholar 

  15. Yu G, Xia J, Zhang F, Wang Z (2017) Hierarchical and hybrid RGO/ZIF-8 nanocomposite as electrochemical sensor for ultrasensitive determination of dopamine. J Electroanal Chem 801:496–502. https://doi.org/10.1016/j.jelechem.2017.08.038

    Article  CAS  Google Scholar 

  16. Xu J, Xia J, Zhang F, Wang Z (2017) An electrochemical sensor based on metal-organic framework-derived porous carbon with high degree of graphitization for electroanalysis of various substances. Electrochim Acta 251:71–80. https://doi.org/10.1016/j.electacta.2017.08.114

    Article  CAS  Google Scholar 

  17. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank JF, Heurtaux D, Clayette P, Kreuz C, Chang JS, Hwang YK, Marsaud V, Bories PN, Cynober L, Gil S, Férey G, Couvreur P, Gref R (2010) Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Mater 9:172–178. https://doi.org/10.1038/nmat2608

    Article  CAS  Google Scholar 

  18. Shi LB, Zhua X, Liua TT, Zhao HL, Lan MB (2016) Encapsulating cu nanoparticles into metal-organic frameworks for nonenzymatic glucose sensing. Sensors Actuators B 227:583–559. https://doi.org/10.1016/j.snb.2015.12.092

    Article  CAS  Google Scholar 

  19. Xia J, Wang Z, Cai F, Zhang F, Yang M, Xiang W, Bi S, Gui R (2015) An electrochemical sensor for the sensitive detection of rutin based on a novel composite of activated silica gel and graphene. RSC Adv 5:39131–39137. https://doi.org/10.1039/C5RA01338K

    Article  CAS  Google Scholar 

  20. Xu J, Cao X, Xia J, Gong S, Wang Z, Lu L (2016) Phosphomolybdic acid functionalized graphene loading copper nanoparticles modified electrodes for non-enzymatic electrochemical sensing of glucose. Anal Chim Acta 934:44–51. https://doi.org/10.1016/j.aca.2016.06.033

    Article  CAS  PubMed  Google Scholar 

  21. Xia J, Cao X, Wang Z, Yang M, Zhang F, Lu B, Li F, Xia L, Li Y, Xia Y (2016) Molecularly imprinted electrochemical biosensor based onchitosan/ionic liquid–graphene composites modified electrodefor determination of bovine serum albumin. Sens Actuators B Chem 225:305–311. https://doi.org/10.1016/j.snb.2015.11.060

    Article  CAS  Google Scholar 

  22. Wang X, Wang Q, Wang Q, Gao F, Gao F, Yang Y, Guo H (2014) Highly dispersible and stable copper terephthalate metal−organic framework−graphene oxide nanocomposite for an electrochemical sensing application. ACS Appl Mater Interfaces 6:11573–11580. https://doi.org/10.1021/am5019918

    Article  CAS  PubMed  Google Scholar 

  23. Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström AM, Zou X (2016) One-pot synthesis of metal−organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc 138:962–968. https://doi.org/10.1021/jacs.5b11720

    Article  CAS  PubMed  Google Scholar 

  24. Dong L, Chen M, Li J, Shi D, Dong W, Li X, Bai Y (2016) Metal-organic framework-graphene oxide composites:a facile method to highly improve the CO2 separation performance of mixed matrix membranes. J Membrane Sci 520:801–811. https://doi.org/10.1016/j.memsci.2016.08.043

    Article  CAS  Google Scholar 

  25. Cravillon J, Münzer S, Lohmeier SJ, Feldhoff A, Huber K, Wiebcke M (2009) Rapid room-temperature synthesis and characterization of nanocrystals of a proto- typical zeolitic imidazolate framework. Chem Mater 21:1410–1412. https://doi.org/10.1021/cm900166h

    Article  CAS  Google Scholar 

  26. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Inter Electrochem 101:19–28. https://doi.org/10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  27. Yang S, Li G, Wang G, Zhao J, Qiao Z, Qu L (2015) Decoration of chemically reduced graphene oxide modified carbon paste electrode with yttrium hexacyanoferrate nanoparticles for nanomolar detection of rutin. Sens Actuators B Chem 206:126–132. https://doi.org/10.1016/j.snb.2014.09.027

    Article  CAS  Google Scholar 

  28. Sun W, Yang M, Li Y, Jiang Q, Liu S, Jiao K (2008) Electrochemical behavior and determination of rutin on a pyridinium-based ionic liquid modified carbon paste electrode. J Pharmaceut Biomed 48:1326–1331

    Article  CAS  Google Scholar 

  29. Zhan T, Sun X, Wang X, Hou W, Sun W (2010) Application of ionic liquid modified carbon ceramic electrode for the sensitive voltammetric detection of rutin. Talanta 82:1853–1857. https://doi.org/10.1016/j.talanta.2010.07.083

    Article  CAS  PubMed  Google Scholar 

  30. Wei Y, Wang G, Li M, Wang C, Fang B (2007) Determination of rutin using a CeO2 nanoparticle-modified electrode. Microchim Acta 158:269–274. https://doi.org/10.1007/s00604-006-0716-5

    Article  CAS  Google Scholar 

  31. Zhu Z, Sun X, Zhuang X, Zeng Y, Sun W, Huang X (2010) Single-walled carbon nanotubes modified carbon ionic liquid electrode for sensitive electrochemical detection of rutin. Thin Solid Films 519:928–933. https://doi.org/10.1016/j.tsf.2010.09.013

    Article  CAS  Google Scholar 

  32. Zeng B, Wei S, Xiao F, Zhao F (2006) Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode. Sens Actuators B Chem 115:240–246. https://doi.org/10.1016/j.snb.2005.09.007

    Article  CAS  Google Scholar 

  33. Li S, Yang B, Wang J, Bin D, Wang C, Zhang K, Du Y (2016) Nonenzymatic electrochemical detection of rutin on Pt nanoparticles/graphene nanocomposites modified glassy carbon electrode. Chem Soc Rev 8:5435–5440

    CAS  Google Scholar 

  34. Yin H, Zhou Y, Cui L, Liu T, Ju P, Zhu L, Ai S (2011) Sensitive voltammetric determination of rutin in pharmaceuticals, human serum, and traditional Chinese medicines using a glassy carbon electrode coated with graphene nanosheets, chitosan, and a poly (amido amine) dendrimer. Microchim Acta 173:337–345. https://doi.org/10.1007/s00604-011-0568-5

    Article  CAS  Google Scholar 

  35. Lu L, Zhang F, Xia J, Wang Z, Liu X, Yuan Y (2015) Conductive carbon black-graphene composite for sensitive sensing of Rutin. Int J Electrochem Sci 10:1646–1657

    Google Scholar 

  36. Duan L, Yang L, Xiong H, Zhang X, Wang S (2013) Studies on the electrochemistry of rutin and its interaction with bovine serum albumin using a glassy carbon electrode modified with carbon-coated nickel nanoparticles. Microchim Acta 180(5–6):355–361

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We really appreciate the financial support from the National Natural Science Foundation of China (21645007 and 21475071), the Taishan Scholar Program of Shandong Province (no. ts201511027) and the Natural Science Foundation of Shandong (ZR2016BM21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfei Xia.

Ethics declarations

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yu, G., Xia, J. et al. One-step synthesis of a Methylene Blue@ZIF-8-reduced graphene oxide nanocomposite and its application to electrochemical sensing of rutin. Microchim Acta 185, 279 (2018). https://doi.org/10.1007/s00604-018-2796-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2796-4

Keywords

Navigation