Skip to main content
Log in

Glucose oxidase assisted visual detection of glucose using oxygen deficient α-MoO3-x nanoflakes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An optical method is described for the quantitation of glucose by using oxygen-deficient α-MoO3-x nanoflakes. It is based on the use of glucose oxidase (GOx) which produces hydrogen peroxide on oxidation of glucose. Hydrogen peroxide then oxidizes the α-MoO3-x nanoflakes, and this results in a visible color change from blue to colorless. The color change can be measured photometrically at 740 nm. The method has a 68 nM detection limit.

Mechanism of glucose detection using blue colored oxygen deficient 2D α-MoO3-x nanoflakes. Hydrogen peroxide (H2O2) is formed as a by-product in the conversion of glucose to glucono-1,5-lactone by glucose oxidase (GOx). In the presence of H2O2, the oxygen vacancies in α-MoO3-x nanoflakes are filled up, and this leads to the loss of blue color of the nanoflakes because they are converted back to colorless bulk α-MoO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li Q, Wang Q, Yang X et al (2017) High sensitivity surface plasmon resonance biosensor for detection of microRNA and small molecule based on graphene oxide-gold nanoparticles composites. Talanta 174:521–526. https://doi.org/10.1016/j.talanta.2017.06.048

    Article  CAS  Google Scholar 

  2. Alsaif MMYA, Latham K, Field MR et al (2014) Tunable plasmon resonances in two-dimensional molybdenum oxide nanoflakes. Adv Mater 26:3931–3937. https://doi.org/10.1002/adma.201306097

    Article  CAS  Google Scholar 

  3. Marshall SM, Flyvbjerg A (2006) Prevention and early detection of vascular complications of diabetes. BMJ 333:475–480. https://doi.org/10.1136/bmj.38922.650521.80

    Article  Google Scholar 

  4. Shah SH, Svetkey LP, Newgard CB (2011) Branching out for detection of type 2 diabetes. Cell Metab 13:491–492. https://doi.org/10.1016/j.cmet.2011.04.003

    Article  CAS  Google Scholar 

  5. Harris MI, Eastman RC (2000) Early detection of undiagnosed diabetes mellitus: a US perspective. Diabetes Metab Res Rev 16:230–236. https://doi.org/10.1001/jama.1996.03540150063033

    Article  CAS  Google Scholar 

  6. Amusat N, Beaupre L, Jhangri GS et al (2014) Diabetes that impacts on routine activities predicts slower recovery after total knee arthroplasty: an observational study. J Phys 60:217–223. https://doi.org/10.1016/j.jphys.2014.09.006

    Google Scholar 

  7. Bühlmann P, Pretsch E, Bakker E (1998) Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem Rev 98:1593–1688

    Article  Google Scholar 

  8. Heller A, Feldman B (2008) Electrochemical glucose sensors and their applications in diabetes management. Chem Rev 108:2482–2505. https://doi.org/10.1021/cr068069y

    Article  CAS  Google Scholar 

  9. Hill EW, Vijayaragahvan A, Novoselov K (2011) Graphene sensors. IEEE Sensors J 11:3161–3170. https://doi.org/10.1109/JSEN.2011.2167608

    Article  CAS  Google Scholar 

  10. Pickup JC, Hussain F, Evans ND et al (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20:2555–2565. https://doi.org/10.1016/j.bios.2004.10.002

    Article  CAS  Google Scholar 

  11. Gao Y, Wu Y, Di J (2017) Colorimetric detection of glucose based on gold nanoparticles coupled with silver nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc 173:207–212. https://doi.org/10.1016/j.saa.2016.09.023

    Article  CAS  Google Scholar 

  12. Vasilopoulou M, Douvas AM, Georgiadou DG et al (2012) The influence of hydrogenation and oxygen vacancies on molybdenum oxides work function and gap states for application in organic optoelectronics. J Am Chem Soc 134:16178–16187. https://doi.org/10.1021/ja3026906

    Article  CAS  Google Scholar 

  13. Alsaif MMYA, Balendhran S, Field MR et al (2014) Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: application for H2 gas sensing. Sensors Actuators B Chem 192:196–204. https://doi.org/10.1016/j.snb.2013.10.107

    Article  CAS  Google Scholar 

  14. Mendel RR (2007) Biology of the molybdenum cofactor. In: J. Exp. bot, pp 2289–2296

    Google Scholar 

  15. Peng J, Weng J (2017) Enhanced peroxidase-like activity of MoS2/graphene oxide hybrid with light irradiation for glucose detection. Biosens Bioelectron 89:652–658. https://doi.org/10.1016/j.bios.2015.12.034

    Article  CAS  Google Scholar 

  16. Dong Y, Zhang H, Rahman ZU et al (2012) Graphene oxide–Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nano 4:3969. https://doi.org/10.1039/c2nr12109c

    CAS  Google Scholar 

  17. Felix S, Chakkravarthy BP, Jeong SK, Grace AN (2015) Synthesis of Pt decorated copper oxide Nanoleaves and its electrochemical detection of glucose. J Electrochem Soc 162:H392–H396. https://doi.org/10.1149/2.0881506jes

    Article  CAS  Google Scholar 

  18. Viswanathan S, Narayanan TN, Aran K et al (2015) Graphene-protein field effect biosensors: glucose sensing. Mater Today 18:513–522. https://doi.org/10.1016/j.mattod.2015.04.003

    Article  CAS  Google Scholar 

  19. Dong Z-Z, Lu L, Ko C-N et al (2017) A MnO2 nanosheet-assisted GSH detection platform using an iridium(iii) complex as a switch-on luminescent probe. Nano 9:4677–4682. https://doi.org/10.1039/c6nr08357a

    CAS  Google Scholar 

  20. Yang CS, Shang DS, Liu N et al (2017) A synaptic transistor based on quasi-2D molybdenum oxide. Adv Mater 29:1–10. https://doi.org/10.1002/adma.201700906

    Google Scholar 

  21. Zhang Z, Chen Z, Cheng F et al (2017) Highly sensitive on-site detection of glucose in human urine with naked eye based on enzymatic-like reaction mediated etching of gold nanorods. Biosens Bioelectron 89:932–936. https://doi.org/10.1016/j.bios.2016.09.090

    Article  CAS  Google Scholar 

  22. Pandey S, Sharma AK, Sharma KH et al (2017) Rapid naked eye detection of alkaline phosphatase using α-MoO 3-x nano-flakes. Sensors Actuators B Chem. https://doi.org/10.1016/j.snb.2017.06.123

  23. Hang D-R, Sharma KH, Chen C-H, Islam SE (2016) Enhanced photocatalytic performance of ZnO Nanorods coupled by two-dimensional α-MoO3 Nanoflakes under UV and visible light irradiation. Chem – A Eur J 22:12777–12784. https://doi.org/10.1002/chem.201602141

    Article  CAS  Google Scholar 

  24. Wendumu TB, Seifert G, Lorenz T et al (2014) Optical properties of triangular molybdenum disulfide nanoflakes. J Phys Chem Lett 5:3636–3640. https://doi.org/10.1021/jz501604j

    Article  CAS  Google Scholar 

  25. Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165–185. https://doi.org/10.1016/0956-5663(92)87013-F

    Article  CAS  Google Scholar 

  26. Balendhran S, Walia S, Nili H et al (2013) Two-dimensional molybdenum trioxide and dichalcogenides. Adv Funct Mater 23:3952–3970. https://doi.org/10.1002/adfm.201300125

    Article  CAS  Google Scholar 

  27. Song G, Shen J, Jiang F et al (2014) Hydrophilic molybdenum oxide nanomaterials with controlled morphology and strong plasmonic absorption for photothermal ablation of cancer cells. ACS Appl Mater Interfaces 6:3915–3922. https://doi.org/10.1021/am4050184

    Article  CAS  Google Scholar 

  28. Xia F, Wang H, Xiao D et al (2014) Two-dimensional material nanophotonics. Nat Photonics 8:899–907. https://doi.org/10.1038/nphoton.2014.271

    Article  CAS  Google Scholar 

  29. Morris GM, Huey R, Lindstrom W et al (2009) Autodock4 and AutoDockTools4: automated docking with selective receptor flexiblity. J Comput Chem 16:2785–2791

    Article  Google Scholar 

  30. Li R, Zhen M, Guan M et al (2013) A novel glucose colorimetric sensor based on intrinsic peroxidase-like activity of C60-carboxyfullerenes. Biosens Bioelectron 47:502–507. https://doi.org/10.1016/j.bios.2013.03.057

    Article  CAS  Google Scholar 

  31. Hu L, Yuan Y, Zhang L et al (2013) Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal Chim Acta 762:83–86. https://doi.org/10.1016/j.aca.2012.11.056

    Article  CAS  Google Scholar 

  32. Liu Y, Yuan M, Qiao L, Guo R (2014) An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens Bioelectron 52:391–396. https://doi.org/10.1016/j.bios.2013.09.020

    Article  CAS  Google Scholar 

  33. Xing Z, Tian J, Asiri AM et al (2014) Two-dimensional hybrid mesoporous Fe2O3–graphene nanostructures: a highly active and reusable peroxidase mimetic toward rapid, highly sensitive optical detection of glucose. Biosens Bioelectron 52:452–457. https://doi.org/10.1016/j.bios.2013.09.029

    Article  CAS  Google Scholar 

  34. Wei H, Wang E (2008) Fe 3 O 4 magnetic nanoparticles as peroxidase mimetics and their applications in H 2 O 2 and glucose detection. Anal Chem 80:2250–2254. https://doi.org/10.1021/ac702203f

    Article  CAS  Google Scholar 

  35. Sodzel D, Khranovskyy V, Beni V et al (2015) Continuous sensing of hydrogen peroxide and glucose via quenching of the UV and visible luminescence of ZnO nanoparticles. Microchim Acta 182:1819–1826. https://doi.org/10.1007/s00604-015-1493-9

    Article  CAS  Google Scholar 

  36. Shin HY, Kim B-G, Cho S et al (2017) Visual determination of hydrogen peroxide and glucose by exploiting the peroxidase-like activity of magnetic nanoparticles functionalized with a poly(ethylene glycol) derivative. Microchim Acta 184:2115–2122. https://doi.org/10.1007/s00604-017-2198-z

    Article  CAS  Google Scholar 

  37. Ding C, Yan Y, Xiang D et al (2016) Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim Acta 183:625–631. https://doi.org/10.1007/s00604-015-1690-6

    Article  CAS  Google Scholar 

  38. Wang N, Sun J, Chen L et al (2015) A Cu2(OH)3Cl-CeO2 nanocomposite with peroxidase-like activity, and its application to the determination of hydrogen peroxide, glucose and cholesterol. Microchim Acta 182:1733–1738. https://doi.org/10.1007/s00604-015-1506-8

    Article  CAS  Google Scholar 

  39. Zhang C, Ni H, Chen R et al (2015) Enzyme-free glucose sensing based on Fe3O4 nanorod arrays. Microchim Acta 182:1811–1818. https://doi.org/10.1007/s00604-015-1511-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the Ministry of Science and Technology (MOST), Taiwan for the financial assistance with the grant number of MOST 104-2113-M-110-003-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Fen Wu.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 54 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nerthigan, Y., Sharma, A.K., Pandey, S. et al. Glucose oxidase assisted visual detection of glucose using oxygen deficient α-MoO3-x nanoflakes. Microchim Acta 185, 65 (2018). https://doi.org/10.1007/s00604-017-2612-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2612-6

Keywords

Navigation