Skip to main content
Log in

Gold decorated polystyrene particles for lateral flow immunodetection of Escherichia coli O157:H7

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Conventional lateral flow immunoassays for pathogen detection usually make use of gold nanoparticles to impart the color necessary for a readout. Unfortunately, these immunoassays require an extra-long time enrichment process before the detection. The synthesis of gold-decorated polystyrene particles (Au-PS), and their incorporation in a lateral flow immunoassay (LFIA) with improved sensitivity for detection of the model pathogen Escherichia coli O157:H7 (E. coli O157:H7) were described in this article. The synthesis of the Au-PS particles occurred through the citrate reduction method. Then the particles underwent surface modification through coating with branched polyethylenimine, followed by grafting of the anti-E. coli O157:H7 antibody. The effect of Au-PS particle size and of the surface coverage on the detection limit of the assay was investigated. The Au-PS particles with 0.46 μm PS and 10% Au surface coverage achieved 500 CFU·mL−1 limit of detection (LOD) for E. coli O157:H7 in apple juice, ground beef, and spiked buffer solutions. Furthermore, these particles achieved 100 CFU·mL−1 LOD when the secondary a signal amplification reaction via gold reduction method was used. While the antibody-antigen interaction has a well-known role in detection, a precise optimization of the Au-PS particles used in LFIA assays can significantly affect performance. In our perception, Au nanoparticles coverage on sub-micron sized polystyrene particles was the critical factor that allowed reaching the reported low concentration of E. coli O157:H7 in real food samples.

Microstructure of gold-decorated polystyrene (Au-PS) particles and a schematic illustration for the detection of Escherichia coli O157:H7 by a lateral flow immunoassay strip containing the same.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alocilja EC, Radke SM (2003) Market analysis of biosensors for food safety. Biosens Bioelectron 18(5–6):841–846. https://doi.org/10.1016/S0956-5663(03)00009-5

    Article  CAS  Google Scholar 

  2. Ho J-aA, Hsu H-W, Huang M-R (2004) Liposome-based microcapillary immunosensor for detection of Escherichia coli O157:H7. Anal Biochem 330(2):342–349. https://doi.org/10.1016/j.ab.2004.03.038

    Article  CAS  Google Scholar 

  3. Hossain SMZ, Ozimok C, Sicard C, Aguirre SD, Ali MM, Li Y, Brennan JD (2012) Multiplexed paper test strip for quantitative bacterial detection. Anal Bioanal Chem 403(6):1567–1576. https://doi.org/10.1007/s00216-012-5975-x

    Article  CAS  Google Scholar 

  4. Kaper JB, Nataro JP, Mobley HL (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2(2):123–140. https://doi.org/10.1038/nrmicro818

    Article  CAS  Google Scholar 

  5. Leonard SR, Mammel MK, Lacher DW, Elkins CA (2015) Application of metagenomic sequencing to food safety: detection of Shiga Toxin-producing Escherichia coli on fresh bagged spinach. Appl Environ Microbiol 81(23):8183–8191. https://doi.org/10.1128/AEM.02601-15

    Article  CAS  Google Scholar 

  6. Belongia EA, MacDonald KL, Parham GL, White KE, Korlath JA, Lobato MN, Strand SM, Casale KA, Osterholm MT (1991) An Outbreak of Escherichia coli 0157:H7 Colitis Associated with Consumption of Precooked Meat Patties. J Infect Dis 164(2):338–343

    Article  CAS  Google Scholar 

  7. Gannon VP, King RK, Kim JY, Thomas EJ (1992) Rapid and sensitive method for detection of Shiga-like toxin-producing Escherichia coli in ground beef using the polymerase chain reaction. Appl Environ Microbiol 58(12):3809–3815

    CAS  Google Scholar 

  8. Scheinberg JA, Dudley EG, Campbell J, Roberts B, DiMarzio M, DebRoy C, Cutter CN (2017) Prevalence and Phylogenetic Characterization of Escherichia coli and Hygiene Indicator Bacteria Isolated from Leafy Green Produce, Beef, and Pork Obtained from Farmers' Markets in Pennsylvania. J Food Prot 80(2):237–244. https://doi.org/10.4315/0362-028X.JFP-16-282

    Article  Google Scholar 

  9. Topalcengiz Z, Danyluk MD (2017) Thermal inactivation responses of acid adapted and non-adapted stationary phase Shiga toxin-producing Escherichia coli (STEC), Salmonella spp. and Listeria monocytogenes in orange juice. Food Control 72, Part A:73-82. doi:https://doi.org/10.1016/j.foodcont.2016.07.014

  10. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28(2):232–254. https://doi.org/10.1016/j.biotechadv.2009.12.004

    Article  CAS  Google Scholar 

  11. Edberg SC, Rice EW, Karlin RJ, Allen MJ (2000) Escherichia coli: the best biological drinking water indicator for public health protection. J Appl Microbiol 88(S1):106S–116S. https://doi.org/10.1111/j.1365-2672.2000.tb05338.x

    Article  Google Scholar 

  12. Fratamico PM, Bhunia AK, Smith JL (2005) Foodborne pathogens: microbiology and molecular biology. Horizon Scientific Press, Poole

  13. Lazcka O, Campo FJD, Muñoz FX (2007) Pathogen detection: A perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205–1217. https://doi.org/10.1016/j.bios.2006.06.036

    Article  CAS  Google Scholar 

  14. Liebsch C, Rödiger S, Böhm A, Nitschke J, Weinreich J, Fruth A, Roggenbuck D, Lehmann W, Schedler U, Juretzek T, Schierack P (2017) Solid-phase microbead array for multiplex O-serotyping of Escherichia coli. Microchim Acta 184(5):1405–1415. https://doi.org/10.1007/s00604-017-2088-4

    Article  CAS  Google Scholar 

  15. Yang Z, Liu Y, Lei C, X-c S, Zhou Y (2016) Ultrasensitive detection and quantification of E. coli O157:H7 using a giant magnetoimpedance sensor in an open-surface microfluidic cavity covered with an antibody-modified gold surface. Microchim Acta 183(6):1831–1837. https://doi.org/10.1007/s00604-016-1818-3

    Article  CAS  Google Scholar 

  16. Zeng Y, Wan Y, Zhang D (2016) Lysozyme as sensitive reporter for fluorometric and PCR based detection of E. coli and S. aureus using magnetic microbeads. Microchim Acta 183(2):741–748. https://doi.org/10.1007/s00604-015-1715-1

    Article  CAS  Google Scholar 

  17. Xu Y, Liu M, Kong N, Liu J (2016) Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications. Microchim Acta 183(5):1521–1542. https://doi.org/10.1007/s00604-016-1841-4

    Article  CAS  Google Scholar 

  18. Posthuma-Trumpie GA, Korf J, Av A (2008) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393(2):569–582. https://doi.org/10.1007/s00216-008-2287-2

    Article  Google Scholar 

  19. Kim H, Bhunia AK (2008) SEL, a selective enrichment broth for simultaneous growth of Salmonella enterica, Escherichia coli O157: H7, and Listeria monocytogenes. Appl Environ Microbiol 74(15):4853–4866

    Article  CAS  Google Scholar 

  20. Hojeij M, Younan N, Ribeaucourt L, Girault HH (2010) Surface plasmon resonance of gold nanoparticles assemblies at liquid | liquid interfaces. Nano 2(9):1665–1669. https://doi.org/10.1039/C0NR00241K

    Google Scholar 

  21. Wang J-Y, Chen M-H, Sheng Z-C, Liu D-F, Wu S-S, Lai W-H (2015) Development of colloidal gold immunochromatographic signal-amplifying system for ultrasensitive detection of Escherichia coli O157:H7 in milk. RSC Adv 5(76):62300–62305. https://doi.org/10.1039/C5RA13279G

    Article  CAS  Google Scholar 

  22. Zhang L, Huang Y, Wang J, Rong Y, Lai W, Zhang J, Chen T (2015) Hierarchical Flowerlike Gold Nanoparticles Labeled Immunochromatography Test Strip for Highly Sensitive Detection of Escherichia coli O157:H7. Langmuir 31(19):5537–5544. https://doi.org/10.1021/acs.langmuir.5b00592

    Article  CAS  Google Scholar 

  23. Cui R, Liu C, Shen J, Gao D, Zhu J-J, Chen H-Y (2008) Gold Nanoparticle–Colloidal Carbon Nanosphere Hybrid Material: Preparation, Characterization, and Application for an Amplified Electrochemical Immunoassay. Adv Funct Mater 18(15):2197–2204. https://doi.org/10.1002/adfm.200701340

    Article  CAS  Google Scholar 

  24. Hwang J, Kwon D, Lee S, Jeon S (2016) Detection of Salmonella bacteria in milk using gold-coated magnetic nanoparticle clusters and lateral flow filters. RSC Adv 6(54):48445–48448. https://doi.org/10.1039/C6RA05446C

    Article  CAS  Google Scholar 

  25. Cho I-H, Bhunia A, Irudayaraj J (2015) Rapid pathogen detection by lateral-flow immunochromatographic assay with gold nanoparticle-assisted enzyme signal amplification. Int J Food Microbiol 206:60–66. https://doi.org/10.1016/j.ijfoodmicro.2015.04.032

    Article  CAS  Google Scholar 

  26. Parolo C, de la Escosura-Muñiz A, Merkoçi A (2013) Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes. Biosens Bioelectron 40(1):412–416. https://doi.org/10.1016/j.bios.2012.06.049

    Article  CAS  Google Scholar 

  27. Chen M, Yu Z, Liu D, Peng T, Liu K, Wang S, Xiong Y, Wei H, Xu H, Lai W (2015) Dual gold nanoparticle lateflow immunoassay for sensitive detection of Escherichia coli O157:H7. Anal Chim Acta 876:71–76. https://doi.org/10.1016/j.aca.2015.03.023

    Article  CAS  Google Scholar 

  28. Cui X, Huang Y, Wang J, Zhang L, Rong Y, Lai W, Chen T (2015) A remarkable sensitivity enhancement in a gold nanoparticle-based lateral flow immunoassay for the detection of Escherichia coli O157:H7. RSC Adv 5(56):45092–45097. https://doi.org/10.1039/C5RA06237C

    Article  CAS  Google Scholar 

  29. McLandsborough L (2004) Food Microbiology Laboratory. CRC Press, Boca Raton

    Google Scholar 

  30. Kato H, Nakamura A, Takahashi K, Kinugasa S (2009) Size effect on UV-Vis absorption properties of colloidal C(60) particles in water. Phys Chem Chem Phys 11(25):4946–4948. https://doi.org/10.1039/b904593g

    Article  CAS  Google Scholar 

  31. Haiss W, Thanh NT, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV− Vis spectra. Anal Chem 79(11):4215–4221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This manuscript is based upon work supported by the U.S. Department of Agriculture, Agricultural Research Service, under Project No. 8072-42000-077. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seon-Ah Jin.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 1.45 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, SA., Heo, Y., Lin, LK. et al. Gold decorated polystyrene particles for lateral flow immunodetection of Escherichia coli O157:H7. Microchim Acta 184, 4879–4886 (2017). https://doi.org/10.1007/s00604-017-2524-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2524-5

Keywords

Navigation