Skip to main content
Log in

A neutral polyacrylate copolymer coating for surface modification of thiol-ene microchannels for improved performance of protein separation by microchip electrophoresis

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have investigated the behavior of thiol-ene substrates that is a class of promising materials for lab-on-a-chip electrophoresis applications. Two polymeric materials were prepared by copolymerization of N,N-dimethylacrylamide (DMA), (3-(methacryloyl-oxy)propyl)trimethoxysilane (PMA) and 3-trimethylsilanyl-prop-2-yne methacrylate (MAPS) and specifically adapted to thiol-ene formulations in order to obtain a neutral and permanent coating for microchannels. The performance of two different thiol-ene substrates (with 20 % and 40 % excess of thiol groups, respectively) coated with either p-(DMA-PMA) or p-(DMA-PMA-MAPS) copolymer were evaluated in terms of surface hydrophilicity, suppression and stability of electro-osmotic flow and prevention of protein adsorption. Surface modification of thiol-ene containing a 20 % excess of thiols with the terpolymer p-(DMA-PMA-MAPS) was found to offer the most stable coating and most efficient charge shielding in the pH range from 3 to 9. The modified microchannels were successfully applied to electrokinetic separations of acidic and basic proteins.

A thiol-ene microchip coated with a poly(dimethylacrylamide)-based copolymer was developed for microchip electrophoresis applications. Surface charge blocking, protein adsorption elimination and electrophoretic separations of acidic and basic proteins were successfully demonstrated using this polymer coated thiol-ene microchip platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu J, Lee ML (2006) Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis. Electrophoresis 27(18):3533–3546. doi:10.1002/elps.200600082

    Article  CAS  Google Scholar 

  2. Belder D, Ludwig M (2003) Surface modification in microchip electrophoresis. Electrophoresis 24(21):3595–3606. doi:10.1002/elps.200305648

    Article  CAS  Google Scholar 

  3. Tu Q, Wang J-C, Zhang Y, Liu R, Liu W, Ren L, Shen S, Xu J, Zhao L, Wang J (2012) Surface modification of poly(dimethylsiloxane) and its applications in microfluidics-based biological analysis. Rev Anal Chem 31(3–4):177–192. doi:10.1515/revac-2012-0016

    CAS  Google Scholar 

  4. Zhou J, Ellis AV, Voelcker NH (2010) Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31(1):2–16. doi:10.1002/elps.200900475

    Article  CAS  Google Scholar 

  5. Nunes PS, Ohlsson PD, Ordeig O, Kutter JP (2010) Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluid Nanofluid 9(2–3):145–161. doi:10.1007/s10404-010-0605-4

    Article  CAS  Google Scholar 

  6. Soper SA, Ford SM, Qi S, McCarley RL, Kelly K, Murphy MC (2000) Peer reviewed: polymeric microelectromechanical systems. Anal Chem 72(19):642A–651A

    Article  Google Scholar 

  7. Lowe AB (2014) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis: a first update. Polym Chem 5(17):4820–4870

    Article  CAS  Google Scholar 

  8. Lowe AB (2010) Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym Chem 1(1):17–36

    Article  CAS  Google Scholar 

  9. Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49(9):1540–1573. doi:10.1002/anie.200903924

    Article  CAS  Google Scholar 

  10. Lafleur JP, Kwapiszewski R, Jensen TG, Kutter JP (2013) Rapid photochemical surface patterning of proteins in thiol-ene based microfluidic devices. Analyst 138(3):845–849. doi:10.1039/c2an36424g

    Article  CAS  Google Scholar 

  11. Carlborg CF, Haraldsson T, Oberg K, Malkoch M, van der Wijngaart W (2011) Beyond PDMS: off-stoichiometry thiol-ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. Lab Chip 11(18):3136–3147

    Article  CAS  Google Scholar 

  12. Feidenhans'l NA, Lafleur JP, Jensen TG, Kutter JP (2014) Surface functionalized thiol-ene waveguides for fluorescence biosensing in microfluidic devices. Electrophoresis 35(2–3):282–288. doi:10.1002/elps.201300271

    Article  Google Scholar 

  13. Sikanen TM, Lafleur JP, Moilanen M-E, Zhuang G, Jensen TG, Kutter JP (2013) Fabrication and bonding of thiol-ene-based microfluidic devices. J Micromech Microeng 23(3):037002. doi:10.1088/0960-1317/23/3/037002

    Article  Google Scholar 

  14. Ashley JF, Cramer NB, Davis RH, Bowman CN (2011) Soft-lithography fabrication of microfluidic features using thiol-ene formulations. Lab Chip 11(16):2772–2778. doi:10.1039/c1lc20189a

    Article  CAS  Google Scholar 

  15. Lafleur JP, Senkbeil S, Novotny J, Nys G, Bogelund N, Rand KD, Foret F, Kutter JP (2015) Rapid and simple preparation of thiol-ene emulsion-templated monoliths and their application as enzymatic microreactors. Lab Chip 15(10):2162–2172

    Article  CAS  Google Scholar 

  16. Tähkä SM, Bonabi A, Nordberg M-E, Kanerva M, Jokinen VP, Sikanen TM (2015) Thiol-ene microfluidic devices for microchip electrophoresis: effects of curing conditions and monomer composition on surface properties. J Chromatogr A 1426:233–240. doi:10.1016/j.chroma.2015.11.072

    Article  Google Scholar 

  17. Pallandre A, de Lambert B, Attia R, Jonas AM, Viovy JL (2006) Surface treatment and characterization: perspectives to electrophoresis and lab-on-chips. Electrophoresis 27(3):584–610. doi:10.1002/elps.200500761

    Article  CAS  Google Scholar 

  18. Zilio C, Sola L, Damin F, Faggioni L, Chiari M (2014) Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics. Biomed Microdevices 16(1):107–114. doi:10.1007/s10544-013-9810-8

    Article  CAS  Google Scholar 

  19. Zilio C, Bernardi A, Palmioli A, Salina M, Tagliabue G, Buscaglia M, Consonni R, Chiari M (2015) New “clickable” polymeric coating for glycan microarrays. Sensors Actuators B Chem 215:412–420

    Article  CAS  Google Scholar 

  20. Hoyle CE, Lee TY, Roper T (2004) Thiol-enes: chemistry of the past with promise for the future. J Polym Sci A Polym Chem 42(21):5301–5338. doi:10.1002/pola.20366

    Article  CAS  Google Scholar 

  21. Ladmiral V, Mantovani G, Clarkson GJ, Cauet S, Irwin JL, Haddleton DM (2006) Synthesis of neoglycopolymers by a combination of “click chemistry” and living radical polymerization. J Am Chem Soc 128(14):4823–4830

    Article  CAS  Google Scholar 

  22. Wang W, Zhou F, Zhao L, Zhang J-R, Zhu J-J (2007) Measurement of electroosmotic flow in capillary and microchip electrophoresis. J Chromatogr A 1170(1–2):1–8

    Article  CAS  Google Scholar 

  23. Perez-Toralla K, Champ J, Mohamadi MR, Braun O, Malaquin L, Viovy J-L, Descroix S (2013) New non-covalent strategies for stable surface treatment of thermoplastic chips. Lab Chip 13(22):4409–4418

    Article  CAS  Google Scholar 

  24. Poitevin M, Shakalisava Y, Miserere S, Peltre G, Viovy J-L, Descroix S (2009) Evaluation of microchip material and surface treatment options for IEF of allergenic milk proteins on microchips. Electrophoresis 30(24):4256–4263

    Article  CAS  Google Scholar 

  25. Mesbah K, Verpillot R, Chiari M, Pallandre A, Taverna M (2014) Neutral polymers as coatings for the high resolution electrophoretic separation of Aβ peptides on glass microchip. Analyst 139(24):6547–6555

    Article  CAS  Google Scholar 

  26. Tetala KKR, Vijayalakshmi MA (2016) A review on recent developments for biomolecule separation at analytical scale using microfluidic devices. Anal Chim Acta 906:7–21. doi:10.1016/j.aca.2015.11.037

    Article  CAS  Google Scholar 

  27. Kitagawa F, Kubota K, Sueyoshi K, Otsuka K (2010) One-step preparation of amino-PEG modified poly(methyl methacrylate) microchips for electrophoretic separation of biomolecules. J Pharm Biomed Anal 53(5):1272–1277. doi:10.1016/j.jpba.2010.07.008

    Article  CAS  Google Scholar 

  28. He M, Zeng Y, Jemere AB, Jed Harrison D (2012) Tunable thick polymer coatings for on-chip electrophoretic protein and peptide separation. J Chromatogr A 1241:112–116

    Article  CAS  Google Scholar 

  29. Sikanen T, Aura S, Franssila S, Kotiaho T, Kostiainen R (2012) Microchip capillary electrophoresis-electrospray ionization-mass spectrometry of intact proteins using uncoated ormocomp microchips. Anal Chim Acta 711:69–76. doi:10.1016/j.aca.2011.10.059

    Article  CAS  Google Scholar 

  30. Mai TD, Pereiro I, Hiraoui M, Viovy J-L, Descroix S, Taverna M, Smadja C (2015) Magneto-immunocapture with on-bead fluorescent labeling of amyloid-β peptides: towards a microfluidized-bed-based operation. Analyst 140:5891–5900

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work, the post-doctoral fellowship for Dr. Thanh Duc Mai and the PhD scholarship for Kiarach Mesbah have been financially supported by the European Community’s Seventh Framework Programme (NaDiNe FP7/2010-2015) under the grant agreement n° 246513. We would like to thank Nacéra Aboud (PNAS, Université Paris Sud) for valuable discussion and Andreas Hjarne Kunding (Technical University of Denmark) for his assistance with chip fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Taverna.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesbah, K., Mai, T.D., Jensen, T.G. et al. A neutral polyacrylate copolymer coating for surface modification of thiol-ene microchannels for improved performance of protein separation by microchip electrophoresis. Microchim Acta 183, 2111–2121 (2016). https://doi.org/10.1007/s00604-016-1825-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-016-1825-4

Keywords

Navigation