Skip to main content

Advertisement

Log in

Cadmium sulfide quantum dots modified with the human transferrin protein siderophiline for targeted imaging of breast cancer cells

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe the fairly easy preparation of thiol stabilized water soluble cadmium sulfide quantum dots and the modification of their surface with the human transferrin protein siderophiline. The particles are shown to enable targeted imaging of human breast adenocarcinoma cell (type MCF7). The fluorescence quantum yield of the modified QDs is ~0.74. The particles have an average diameter of 8.1 ± 0.1 nm as determined in solution by dynamic light scattering. The cancer cells were imaged by fluorescence microscopy of the QDs which display strong green fluorescenece under 350 nm excitation. A cytotoxicity assay showed 66 and 78 % cell viabilities, respectively, after 24 h of incubation with the QDs and modified QDs.

Water-soluble cadmium sulfide QDs were modified with siderophiline (transferrin) and applied to fluorescent and targeted imaging of breast cancer cells. Left: control (human breast cancer cells (type MCF-7) were treated with QDs without siderophiline); right: human breast cancer cells (type MCF-7) treated with siderophiline modified QDs

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sutherland AJ (2002) Quantum dots as luminescent probes in biological systems. Curr Opin Solid State Mater Sci 6(4):365–370. doi:10.1016/S1359-0286(02)00081-5

    Article  CAS  Google Scholar 

  2. Chen L, Han H (2014) Recent advances in the use of near-infrared quantum dots as optical probes for bioanalytical, imaging and solar cell application. Microchim Acta 181(13–14):1485–1495. doi:10.1007/s00604-014-1204-y

    Article  CAS  Google Scholar 

  3. Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016. doi:10.1126/science.281.5385.2013

    Article  CAS  Google Scholar 

  4. Kloepfer J, Mielke R, Wong M, Nealson K, Stucky G, Nadeau J (2003) Quantum dots as strain-and metabolism-specific microbiological labels. Appl Environ Microbiol 69(7):4205–4213. doi:10.1128/AEM.69.7.4205-4213.2003

    Article  CAS  Google Scholar 

  5. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018. doi:10.1126/science.281.5385.2016

    Article  CAS  Google Scholar 

  6. Guo W, Li JJ, Wang YA, Peng X (2003) Conjugation chemistry and bioapplications of semiconductor box nanocrystals prepared via dendrimer bridging. Chem Mater 15(16):3125–3133. doi:10.1021/cm034341y

    Article  CAS  Google Scholar 

  7. Guo W, Li JJ, Wang YA, Peng X (2003) Luminescent CdSe/CdS core/shell nanocrystals in dendron boxes: superior chemical, photochemical and thermal stability. J Am Chem Soc 125(13):3901–3909. doi:10.1021/ja028469c

    Article  CAS  Google Scholar 

  8. Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss S, Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105(37):8861–8871. doi:10.1021/jp0105488

    Article  CAS  Google Scholar 

  9. Parak WJ, Gerion D, Zanchet D, Woerz AS, Pellegrino T, Micheel C, Williams SC, Seitz M, Bruehl RE, Bryant Z, Bustamante C, Bertozzi CR, Alivisatos AP (2002) Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem Mater 14(5):2113–2119. doi:10.1021/cm0107878

    Article  CAS  Google Scholar 

  10. Jaffar S, Nam KT, Khademhosseini A, Xing J, Langer RS, Belcher AM (2004) Layer-by-layer surface modification and patterned electrostatic deposition of quantum dots. Nano Lett 4(8):1421–1425. doi:10.1021/nl0493287

    Article  CAS  Google Scholar 

  11. Majumder M, Karan S, Chakraborty AK, Mallik B (2010) Synthesis of thiol capped CdS nanocrystallites using microwave irradiation and studies on their steady state and time resolved photoluminescence. Spectrochim Acta A 76(2):115–121. doi:10.1016/j.saa.2010.02.037

    Article  Google Scholar 

  12. Wei G, Yan M, Ma L, Zhang H (2012) The synthesis of highly water-dispersible and targeted CdS quantum dots and it is used for bioimaging by confocal microscopy. Spectrochim Acta A 85(1):288–292. doi:10.1016/j.saa.2011.10.011

    Article  CAS  Google Scholar 

  13. Li D, Yan Z-Y, Cheng W-Q (2008) Determination of ciprofloxacin with functionalized cadmium sulfide nanoparticles as a fluorescence probe. Spectrochim Acta A 71(4):1204–1211. doi:10.1016/j.saa.2008.03.024

    Article  Google Scholar 

  14. de la Fuente JM, Fandel M, Berry CC, Riehle M, Cronin L, Aitchison G, Curtis AS (2005) Quantum dots protected with tiopronin: a new fluorescence system for cell-biology studies. ChemBioChem 6(6):989–991. doi:10.1002/cbic.200500071

    Article  Google Scholar 

  15. Kricka LJ (1995) Nonisotopic probing, blotting, and sequencing, 2nd edn. Academic, San Diego

    Google Scholar 

  16. Wu X, Liu H, Liu J, Haley KN, Treadway JA, Larson JP, Ge N, Peale F, Bruchez MP (2002) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21(1):41–46. doi:10.1038/nbt764

    Article  Google Scholar 

  17. Chen F, Gerion D (2004) Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and nuclear targeting in living cells. Nano Lett 4(10):1827–1832. doi:10.1021/nl049170q

    Article  CAS  Google Scholar 

  18. Lu Y, Low PS (2002) Folate-mediated delivery of macromolecular anticancer therapeutic agents. Adv Drug Deliv Rev 54(5):675–693. doi:10.1016/S0169-409X(02)00042-X

    Article  CAS  Google Scholar 

  19. Sudimack J, Lee RJ (2000) Targeted drug delivery via the folate receptor. Adv Drug Deliv Rev 41(2):147–162. doi:10.1016/S0169-409X(99)00062-9

    Article  CAS  Google Scholar 

  20. Leamon CP, Low PS (2001) Folate-mediated targeting: from diagnostics to drug and gene delivery. Drug Discov Today 6(1):44–51. doi:10.1016/S1359-6446(00)01594-4

    Article  CAS  Google Scholar 

  21. Lu Y, Sega E, Leamon CP, Low PS (2004) Folate receptor-targeted immunotherapy of cancer: mechanism and therapeutic potential. Adv Drug Deliv Rev 56(8):1161–1176. doi:10.1016/j.addr.2004.01.009

    Article  CAS  Google Scholar 

  22. Chen HM, Huang XF, Xu L, Xu J, Chen KJ, Feng D (2000) Self-assembly and photoluminescence of CdS-mercaptoacetic clusters with internal structures. Superlattice Microst 27(1):1–5. doi:10.1006/spmi.1999.0794

    Article  CAS  Google Scholar 

  23. Winter JO, Gomez N, Gatzert S, Schmidt CE, Korgel BA (2005) Variation of cadmium sulfide nanoparticle size and photoluminescence intensity with altered aqueous synthesis conditions. Colloids Surf A 254(1–3):147–157. doi:10.1016/j.colsurfa.2004.11.024

    Article  CAS  Google Scholar 

  24. Koneswaran M, Narayanaswamy R (2009) Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury(II). Sensor Actuators B Chem 139(1):91–96. doi:10.1016/j.snb.2008.09.011

    Article  CAS  Google Scholar 

  25. Chen N, He Y, Su Y, Li X, Huang Q, Wang H, Zhang X, Tai R, Fan C (2012) The cytotoxicity of cadmium-based quantum dots. Biomaterials 33(5):1238–1244. doi:10.1016/j.biomaterials.2011.10.070

    Article  CAS  Google Scholar 

  26. Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C (2009) The cytotoxicity of cadmium based, aqueous phase – synthesized, quantum dots and its modulation by surface coating. Biomaterials 30(1):19–25. doi:10.1016/j.biomaterials.2008.09.029

    Article  CAS  Google Scholar 

  27. Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11–18. doi:10.1021/nl0347334

    Article  CAS  Google Scholar 

  28. Li JL, Wang L, Liu XY, Zhang ZP, Guo HC, Liu WM, Tang SH (2009) In vitro cancer cell imaging and therapy using transferrin-conjugated gold nanoparticles. Cancer Lett 274(2):319–326. doi:10.1016/j.canlet.2008.09.024

    Article  CAS  Google Scholar 

  29. Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976. doi:10.1038/nbt994

    Article  CAS  Google Scholar 

  30. Wolfbeis OS (2015) An overview of nanoparticles commonly used in fluorescent bioimaging. Chem Soc Rev in press. doi:10.1039/c4cs00392f

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Mahani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedram, P., Mahani, M., Torkzadeh-Mahani, M. et al. Cadmium sulfide quantum dots modified with the human transferrin protein siderophiline for targeted imaging of breast cancer cells. Microchim Acta 183, 67–71 (2016). https://doi.org/10.1007/s00604-015-1593-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1593-6

Keywords

Navigation