Skip to main content
Log in

Highly sensitive and selective electrochemical detection of L-cysteine using nanoporous gold

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nanoporous gold (NPG) with uniform pore sizes and ligaments was prepared by using a simple dealloying method. NPG electrodes exhibit excellent electrocatalytic activity towards the oxidation of CySH and the mechanism for the electrochemical reaction of CySH on NPG has been discussed. Interestingly, if the operating potential is fixed at 0.65 V, a strong current is observed and interferences by tryptophan and tyrosine are avoided. The calibration plot is linear in the concentration range from 1 μM to 400 μM (R2 = 0.994), and the quantification limit is as low as 50 nM. The NPG-modified electrode has good reproducibility, high sensitivity and selectivity, can be used to sense CySH in aqueous solution.

Nanoporous gold with uniform pore sizes and ligaments was employed as sensitive and selective electrochemical sensor for detection of Lcysteine, and the quantification limit is as low as 50 nM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Buritis CA, Ashwood ER (1996) Tietz fundamentals of clinical chemistry, 4th edn. WB Saunders Co, New York

    Google Scholar 

  2. Hao WH, McBride A, McBride S, Gao JP, Wang ZY (2011) Colorimetric and near-infrared fluorescence turn-on molecular probe for direct and highly selective detection of cysteine in human plasma. J Mater Chem 21:1040–1048

    Article  CAS  Google Scholar 

  3. Guan X, Hoffman B, Dwivedi C, Matthees DP (2003) A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples. J Pharm Biomed Anal 31:251–261

    Article  CAS  Google Scholar 

  4. Tu X, Xie Q, Huang Z, Jia X, Ye M (2008) Electrocatalytic oxidation and sensitive determination of L -cysteine at a poly(aminoquinone)-carbon nanotubes hybrid film modified glassy carbon electrode. Microchim Acta 162:219

    Article  CAS  Google Scholar 

  5. Sattarahmady N, Heli H (2011) An electrocatalytic transducer for l-cysteine detection based on cobalt hexacyanoferrate nanoparticles with a core–shell structure. Anal Biochem 409:74–80

    Article  CAS  Google Scholar 

  6. Liu L, Yin Z, Yang Z (2010) A l-cysteine sensor based on Pt nanoparticles/poly(o-aminophenol) film on glassy carbon electrode. Bioelectrochemistry 79:84–89

    Article  CAS  Google Scholar 

  7. Lai Y, Ganguly A, Chen L, Chen K (2010) Direct voltammetric sensing of l-Cysteine at pristine GaN nanowires electrode. Biosens Bioelectron 26:1688–1691

    Article  CAS  Google Scholar 

  8. Hsiao Y, Su W, Cheng J, Cheng S (2011) Electrochemical determination of cysteine based on conducting polymers/gold nanoparticles hybrid nanocomposites. Electrochim Acta 56:6887–6895

    Article  CAS  Google Scholar 

  9. Ziyatdinova G, Grigor’eva L, Morozov M, Gilmutdinov A, Budnikov H (2009) Electrochemical oxidation of sulfur-containing amino acids on an electrode modified with multi-walled carbon nanotubes. Microchim Acta 165:353

    Article  CAS  Google Scholar 

  10. Ojani R, Raoof JB, Zarei E (2010) Preparation of poly N, N-dimethylaniline/ferrocyanide film modified carbon paste electrode: Application to electrocatalytic oxidation of l-cysteine. J Electroanal Chem 638:241–245

    Article  CAS  Google Scholar 

  11. Samec Z, Malysheva Z, Koryta J, Pradáč J (1975) A contribution to the voltammetric study of cystine and cysteine at Pt electrodes in 0.5 M H2SO4. J Electroanal Chem 65:573–586

    Article  CAS  Google Scholar 

  12. Koryta J, Pradac J (1968) Electrode processes of the sulfhydryl-disulfide system: III. Cysteine at platinum and gold electrodes. J Electroanal Chem 17:185–189

    Article  CAS  Google Scholar 

  13. Fawcett WR, Fedurco M, Kovacova Z, Borkowska Z (1994) Oxidation of cysteine, cysteinesulfinic acid and cysteic acid on a polycrystalline gold electrode. J Electroanal Chem 368:265–274

    Article  CAS  Google Scholar 

  14. Koryta J, Pradac J (1968) Electrode processes of the sulfhydryl-disulfide system: II. Cystine at a gold electrode. J Electroanal Chem 17:177–183

    Article  CAS  Google Scholar 

  15. Ralph TR, Hitchman ML, Millington JP, Walsh FC (1994) The electrochemistry of l-cystine and l-cysteine: Part 1: thermodynamic and kinetic studies. J Electroanal Chem 375:1–15

    Article  CAS  Google Scholar 

  16. Reynaud JA, Malfoy B (1980) Electrochemical investigations of amino acids at solid electrodes: Part I. Sulfur components: Cystine, cysteine, methionine. J Electroanal Chem 114:195–211

    Article  CAS  Google Scholar 

  17. Zhao Y, Zhang W, Chen H, Luo Q (2003) Electrocatalytic oxidation of cysteine at carbon nanotube powder microelectrode and its detection. Sens Actuators B 92:279–285

    Article  Google Scholar 

  18. Majidi M-R, Asadpour-Zeynali K, Hafezi B (2010) Sensing L-cysteine in urine using a pencil graphite electrode modified with a copper hexacyanoferrate nanostructure. Microchim Acta 169:283–288

    Article  CAS  Google Scholar 

  19. Ye M, Xu B, Zhang W (2011) Sputtering deposition of Pt nanoparticles on vertically aligned multiwalled carbon nanotubes for sensing L-cysteine. Microchim Acta 172:439–446

    Article  CAS  Google Scholar 

  20. Agüĺ L, Peña-Farfal C, Yánez-Sedeño P, Pingarrón JM (2007) Electrochemical determination of homocysteine at a gold nanoparticle-modified electrode. Talanta 74:412–420

    Article  Google Scholar 

  21. Zhao J, Yu J, Wang F, Hu S (2007) Fabrication of gold nanoparticle-dihexadecyl hydrogen phosphate film on a glassy carbon electrode, and its application to glucose sensing. Microchimica Acta 156:277–282

    Article  Google Scholar 

  22. Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Nature 410:450

    Article  CAS  Google Scholar 

  23. Ding Y, Erlebacher J (2003) J Am Chem Soc 125:7772

    Article  CAS  Google Scholar 

  24. Xu C, Su J, Xu X, Liu P, Zhao H, Tian F, Ding Y (2007) Low temperature CO oxidation over unsupported nanoporous gold. J Am Chem Soc 129:42–43

    Article  CAS  Google Scholar 

  25. Liu Z, Du J, Qiu C, Huang L, Ma H, Shen D, Ding Y (2009) Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem Commun 11:1365–1368

    Article  CAS  Google Scholar 

  26. Zeis R, Mathur A, Fritz G, Lee J, Erlebacher J (2007) Platinum-plated nanoporous gold: an efficient, low Pt loading electrocatalyst for PEM fuel cells. J Power Sources 165:65–72

    Article  CAS  Google Scholar 

  27. Ge X, Wang L, Liu Z, Ding Y (2011) Nanoporous gold leaf for amperometric determination of nitrite. Electroanal 23:381–386

    Article  CAS  Google Scholar 

  28. Qiu H, Xue L, Ji G, Zhou G, Huang X, Qu Y, Gao P (2009) Enzyme-modified nanoporous gold-based electrochemical biosensors. Biosens Bioelectron 24:3014–3018

    Article  CAS  Google Scholar 

  29. Liu Z, Zhang H, Ma H, Hou S (2011) Selective determination of p-Nitrophenol based on its unique voltammetric behavior on nanoporous gold. Electroanal 23:2851–2861

    Article  CAS  Google Scholar 

  30. Abbaspour A, Ghaffarinejad A (2008) Electrocatalytic oxidation of l-cysteine with a stable copper–cobalt hexacyanoferrate electrochemically modified carbon paste electrode. Electrochim Acta 53:6643–6650

    Article  CAS  Google Scholar 

  31. Kissinger PT, Heineman WR (1984) Laboratory techniques in electroanalytical chemistry. Marcel Dekker, New York

    Google Scholar 

  32. Deng C, Chen J, Chen X, Wang M, Nie Z, Yao S (2009) Electrochemical detection of l-cysteine using a boron-doped carbon nanotube-modified electrode. Electrochim Acta 54:3298–3302

    Article  CAS  Google Scholar 

  33. Laviron E, Roullier L (1980) General expression of the linear potential sweep voltammogram for a surface redox reaction with interactions between the adsorbed molecules: applications to modified electrodes. J Electroanal Chem 115:65–74

    Article  CAS  Google Scholar 

  34. Bard AJ, Faulkner LR (1980) Electrochemical methods, Fundamentals and applications. Wiley, New York, pp 226–236

    Google Scholar 

  35. Qua L, Yang S, Li G, Yang R, Li J, Yu L (2011) Preparation of yttrium hexacyanoferrate/carbon nanotube/Nafion nanocomposite film-modified electrode: application to the electrocatalytic oxidation of l-cysteine. Electrochim Acta 56:2934–2940

    Article  Google Scholar 

  36. Tang X, Liu Y, Hou H, You T (2010) Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. Talanta 80:2182–2186

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (21175059, 21073111), Graduate Independent Innovation Foundation of Shandong University, and National Basic Research Program of China (2009CB93103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houyi Ma.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Zhang, H., Hou, S. et al. Highly sensitive and selective electrochemical detection of L-cysteine using nanoporous gold. Microchim Acta 177, 427–433 (2012). https://doi.org/10.1007/s00604-012-0801-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0801-x

Keywords

Navigation