Skip to main content
Log in

Electrochemical oxidation behavior of guanosine-5´-monophosphate on a glassy carbon electrode modified with a composite film of graphene and multi-walled carbon nanotubes, and its amperometric determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The electrochemical oxidation of guanosine-5′-monophosphate (GMP) was studied with a glassy carbon electrode modified with a composite made from graphene and multi-walled carbon nanotubes. GMP undergoes an irreversible oxidation process at an oxidation peak potential of 987 mV in phosphate buffer solution. Compared to other electrodes, the oxidation peak current of GMP with this electrode was significantly increased, and the corresponding oxidation peak potential negatively shifted, thereby indicating that the modified material exhibited electrochemical catalytic activity towards GMP. Chronocoulometry demonstrates that the material also effectively increases the surface area of the electrode and increases the amount of GMP adsorbed. Under the optimum conditions, the oxidation current is proportional to the GMP concentration in the range from 0.1 to 59.7 μM with a correlation coefficient of 0.9991. The detection limit is 0.025 μM (at S/N = 3).

We have developed an electrochemical method for sensitive determination of guanosine-5’-monophosphate (1) based on graphene and multi-walled carbon nanotubes modified glassy carbon electrode by amperometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schaller JP, Kuchan MJ, Thomas DL, Cordle CT, Winship TR, Buck RH, Baggs GE, Wheeler JXG (2004) Effect of dietary ribonucleotides on infant immune status. Part 1: Humoral responses. Pediatr Res 56:883

    Article  CAS  Google Scholar 

  2. Carver JD, Allan WW (1995) The role of nucleotides in human nutrition. J Nutr Biochem 6:58

    Article  CAS  Google Scholar 

  3. Schlimme E, Martin D, Meisel H (2007) Nucleosides and nucleotides: natural bioactive substances in milk and colostrum. Br J Nutr 84:59

    Google Scholar 

  4. He J, Kobayashi K, Chen Y, Villemure G, Yamagishi A (2001) Electrocatalytic response of GMP on an ITO electrode modified with a hybrid film of Ni (II)-Al (III) layered double hydroxide and amphiphilic Ru (II) cyanide complex. Electrochem Commun 3:473

    Article  CAS  Google Scholar 

  5. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55:3909

    Article  CAS  Google Scholar 

  6. Lu T, Zhang Y, Li H, Pan L, Li Y, Sun Z (2010) Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors. Electrochim Acta 55:4170

    Article  CAS  Google Scholar 

  7. Ang PK, Chen W, Wee ATS, Loh KP (2008) Solution-gated epitaxial graphene as pH sensor. J Am Chem Soc 130:14392

    Article  CAS  Google Scholar 

  8. Schedin F, Geim AK, Morozov SV, Jiang D, Hill EH, Blake P, Novoselov KS (2007) Detection of individual gas molecules absorbed on graphene. Nat Mater 6:652

    Article  CAS  Google Scholar 

  9. Li J, Guo S, Zhai Y, Wang E (2009) High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal Chim Acta 649:196

    Article  CAS  Google Scholar 

  10. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889

    Article  CAS  Google Scholar 

  11. Yin H, Zhou Y, Ma Q, Ai S, Ju P, Zhu L, Lu L (2010) Electrochemical oxidation behavior of guanine and adenine on graphene-Nafion composite film modified glassy carbon electrode and the simultaneous determination. Process Biochem 45:1707

    Article  CAS  Google Scholar 

  12. Yin H, Zhou Y, Ma Q, Ai S, Chen Q, Zhu L (2010) Electrocatalytic oxidation behavior of guanosine at graphene, chitosan and Fe3O4 nanoparticles modified glassy carbon electrode and its determination. Talanta 82:1199

    Article  Google Scholar 

  13. Yin H, Ma Q, Zhou Y, Ai S, Zhu L (2010) Electrochemical behavior and voltammetric determination of 4-aminophenol based on graphene-chitosan composite film modified glassy carbon electrode. Electrochim Acta 55:7102

    Article  CAS  Google Scholar 

  14. Wang C, Zhang L, Guo Z, Xu J, Wang H, Zhai K, Zhuo X (2010) A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim Acta 169:1

    Article  CAS  Google Scholar 

  15. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Electrochemical determination of NADH and ethanol based on ionic liquid functionalized graphene. Biosens Bioelectron 25:1504

    Article  CAS  Google Scholar 

  16. Zhou K, Zhu Y, Yang X, Luo J, Li C, Luan S (2010) A novel hydrogen peroxide biosensor based on Au-graphene-HRP-chitosan biocomposites. Electrochim Acta 55:3055

    Article  CAS  Google Scholar 

  17. Zhang X, Zhao D, Feng L, Jia L, Wang S (2010) Electrochemical sensor for procaine based on a glassy carbon electrode modified with poly-amidosulfonic acid and multi-walled carbon nanotubes. Microchim Acta 169:153

    Article  CAS  Google Scholar 

  18. Wang Z, Xiao S, Chen Y (2006) β-Cyclodextrin incorporated carbon nanotubes-modified electrodes for simultaneous determination of adenine and guanine. J Electroanal Chem 589:237

    Article  CAS  Google Scholar 

  19. Tu X, Xie Q, Huang Z, Jia X, Ye M (2008) Electrocatalytic oxidation and sensitive determination of L-cysteine at a poly (aminoquinone)-carbon nanotubes hybrid film modified glassy carbon electrode. Microchim Acta 162:219

    Article  CAS  Google Scholar 

  20. Shen Q, Wang X (2009) Simultaneous determination of adenine, guanine and thymine based on β-cyclodextrin/MWNTs modified electrode. J Electroanal Chem 632:149

    Article  CAS  Google Scholar 

  21. Mai N, Liu X, Zeng X, Xing L, Wei W, Luo S (2010) Electrocatalytic oxidation of the reduced nicotinamide adenine dinucleotide at carbon ionic liquid electrode modified with polythionine/multi-walled carbon nanotubes composite. Microchim Acta 168:215

    Article  CAS  Google Scholar 

  22. De-los-Santos-álvarez N, Lobo-Castañón M, Miranda-Ordieres A, Tuñón-Blanco P (2007) Electrocatalytic activity of oxidation products of guanine and 5′-GMP towards the oxidation of NADH. Electrochim Acta 53:829

    Article  Google Scholar 

  23. Xiang He J, Kobayashi K, Mei Chen Y (2001) Electrocatalytic response of GMP on an ITO electrode modified with a hybrid film of Ni (II)-Al (III) layered double hydroxide and amphiphilic Ru (II) cyanide complex. Electrochem Commun 3:473

    Article  Google Scholar 

  24. Chen S, Wang C (2007) Electrocatalytic properties of guanine, adenine, guanosine-5′-monophosphate, and ssDNA by Fe (II) bis (2, 2′: 6′, 2″-terpyridine), Fe (II) tris (1, 10-phenanthroline), and poly-Fe (II) tris (5-amino-1, 10-phenanthroline). Bioelectrochemistry 70:452

    Article  CAS  Google Scholar 

  25. Li Y, Wu Y (2009) Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J Am Chem Soc 131:5851

    Article  CAS  Google Scholar 

  26. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558

    Article  CAS  Google Scholar 

  27. Furtado C, Kim U, Gutierrez H, Pan L, Dickey E, Eklund P (2004) Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J Am Chem Soc 126:6095

    Article  CAS  Google Scholar 

  28. Torriero A, Tonn C, Sereno L, Raba J (2006) Electrooxidation mechanism of non-steroidal anti-inflammatory drug piroxicam at glassy carbon electrode. J Electroanal Chem 588:218

    Article  CAS  Google Scholar 

  29. Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355

    Article  CAS  Google Scholar 

  30. Goyal RN, Dryhurst G (1982) Redox chemistry of guanine and 8-oxyguanine and a comparison of the peroxidase-catalyzed and electrochemical oxidation of 8-oxyguanine. J Electroanal Chem 135:75

    Article  CAS  Google Scholar 

  31. Adams R (1969) Electrochemistry at solid electrodes. Marcel Dekker, New York

    Google Scholar 

  32. Anson F (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt (III)-(ethylenedinitrilo (tetraacetate) on mercury electrodes. Anal Chem 36:932

    Article  CAS  Google Scholar 

  33. Velasco J (1997) Determination of standard rate constants for electrochemical irreversible processes from linear sweep voltammograms. Electroanalysis 9:880

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (No.21075078) and the Natural Science Foundation of Shandong province of China (ZR2010BM005) for the financial supports.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiyun Ai or Lusheng Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Zhou, Y., Ma, Q. et al. Electrochemical oxidation behavior of guanosine-5´-monophosphate on a glassy carbon electrode modified with a composite film of graphene and multi-walled carbon nanotubes, and its amperometric determination. Microchim Acta 172, 343–349 (2011). https://doi.org/10.1007/s00604-010-0499-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0499-6

Keywords

Navigation