Skip to main content
Log in

Double-walled carbon nanotube based carbon paste electrode as xanthine biosensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe the first usage of a double walled carbon nanotube (DWCNT) modified carbon paste electrode as biosensor transducer. Xanthine was chosen as a substrate for evaluation of the electrode performance. Proper amount of DWCNT and xanthine oxidase enzyme were mixed with proper amount of graphite and mineral oil for attaining the xanthine biosensor. Results were compared with previous work that includes multi-walled carbon nanotube and single-wall carbon nanotube based carbon paste electrode xanthine biosensors. A linearity was obtained in the concentration range between 2–50 μM xanthine under the response time of 150 s with the equation of y = 0.0441x + 0.2013 and RSD value of 4.20%. This system was applied to the determination of xanthine in canned tuna fish samples and recovery was calculated as 99.20% ± 0.07.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pumera M (2007) Electrochemical properties of double wall carbon nanotube electrodes. Nanoscale Res Lett 2:87

    Article  CAS  Google Scholar 

  2. Wang S, Grifoni M (2005) Helicity and electron-correlation effects on transport properties of double-walled carbon nanotubes. Phys Rev Lett 95: 266802-1-4.

    Google Scholar 

  3. Pumera M, Iwai H (2009) Metalic impurities within residual catalyst metallic nanoparticles are in some cases responsible for “electrocatalytic” effect of carbon nanotubes. Chem Asian J 4:554

    Article  CAS  Google Scholar 

  4. Pumera M, Iwai H (2009) Multicomponent metallic impurities and their influence upon the electrochemistry of carbon nanotubes. J Phys Chem C 113:4401

    Article  CAS  Google Scholar 

  5. Pumera M (2009) The electrochemistry of carbon nanotubes: fundamentals and applications. Chem Eur J 15:4970

    Article  CAS  Google Scholar 

  6. Pumera M, Břetislav Š, Kateřina V (2009) The electrochemistry of carbon nanotubes: fundamentals and applications. J Nanosci Nanotechnol 9:2671

    Article  CAS  Google Scholar 

  7. Pumera M, Smid B (2009) Redox protein noncovalent functionalization of double-wall carbon nanotubes: electrochemical binder-less glucose biosensor. J Nanoscience Nanotechno 9:2671

    Article  CAS  Google Scholar 

  8. Moore RR, Banks CE, Compton RG (2004) Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts. Anal Chem 76:2677

    Article  CAS  Google Scholar 

  9. Pumera M, Merkoçi A, Alegret S (2005) Carbon nanotube epoxy composites for electrochemical sensing. Sensors and Actuators B 113:617

    Article  Google Scholar 

  10. Liu Y, Wei W, Zhai X, Zeng J (2008) A carbon nanotube-modified biosensors containing a dsDNA-Ni(II) complex membrane, and its use for electro-catalytic oxidation of methanol in alkaline medium. Microchim Acta 162:245

    Article  CAS  Google Scholar 

  11. Wei W, Jin H, Zhao G (2009) A reagentless nitrite biosensor based on direct electron transfer of hemoglobin on a room temperature ionic liguid/ carbon nanotube-modified electrode. Microchim Acta 164:167

    Article  CAS  Google Scholar 

  12. Wang C, Li C, Ting L, Xu X, Wang C (2006) Application of a single-wall carbon nano-tube film electrode to the determination of trace amounts of folic acid. Microchim Acta 152:233

    Article  CAS  Google Scholar 

  13. Zheng Y, Yang C, Pu W, Zhang J (2009) Carbon nanotube-based DNA biosensor for monitoring phenolic pollutants. Microchim Acta. doi:10.1007/s00604-009-0154-2 on-line first

    Google Scholar 

  14. Zhao F, Huang F, Yan Q, Zeng B (2005) Characterization of dodecanethiol SAM and Multi-walled carbon nanotube modified gold electrodes, and voltammetric determination of prochlorperazine. Microchim Acta 150:179

    Article  CAS  Google Scholar 

  15. Wang C, Wang G, Fang B (2009) Electrocatalytic oxidation of bilirubin at ferrocenecarboxamide modified MWCNT—gold nanocomposite electrodes. Microchim Acta 164:113

    Article  CAS  Google Scholar 

  16. Wei S, Zhao F, Zeng B (2005) Electrochemical behavior and determination of uric acid at single-walled carbon nanotube modified gold electrodes. Microchim Acta 150:219

    Article  CAS  Google Scholar 

  17. Yi H, Qu W, Huang W (2008) Electrochemical determination of malachite gren using a multi-wall carbon nanotube modified glassy carbon electrode. Microchim Acta 160:291

    Article  CAS  Google Scholar 

  18. Wan H, Zou Q, Yan R, Zhao F, Zeng B (2007) Electrochemistry and voltammetric determination of tannic acid on a single-wall carbon nanotube-coated glassy carbon electrode. Microchim Acta 159:109

    Article  CAS  Google Scholar 

  19. Shahrokhian S, Amiri M (2007) Multi-walled carbon nanotube paste electrode for selective voltammetric detection of isoniazid. Microchim Acta 157:149

    Article  CAS  Google Scholar 

  20. Li C (2007) Voltammetric determination of 2-chlorophenol using a glassy Carbon electrode coated with multi-wall carbon nanotube-dicetly phosphate film. Microchim Acta 157:21

    Article  CAS  Google Scholar 

  21. Anık Ü, Çubukçu M (2008) Examination of the electroanalytic performance of carbon nanotube (CNT) modified carbon paste electrodes as xanthine biosensor transducers. Turkish Journal of Chemistry 32:711

    Google Scholar 

  22. Pumera M, Smid B (2007) Redox protein noncovalent functionalization of double-wall carbon nanotubes: electrochemical binder-less glucose biosensor. J Nanoscience Nanotechno 7:3590

    Article  CAS  Google Scholar 

  23. Anik-Kirgoz Ü, Timur S, Wang J, Telefoncu A (2004) Xanthine oxidase modified glassy carbon paste electrode. Electrochem Commun 6:913

    Article  Google Scholar 

  24. Pumera M (2007) Electrochemical properties of double wall carbon nanotube electrodes. Nanoscale Res Lett 2:87–93

    Article  CAS  Google Scholar 

  25. Perez B, Pumera M, Merkoçi A, Alegret S (2005) Glucose Biosensor Based on Carbon Nanotube Epoxy Composites. J Nanoscience Nanotechno 5:1694

    Article  CAS  Google Scholar 

  26. Zhang M, Smith A, Gorski W (2004) Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem 76:5045

    Article  CAS  Google Scholar 

  27. Agüi L, Manso J, Yanez-Sedeno P, Pingarron JM (2006) Amperometric biosensor for hypoxanthine based on immobilized xanthine oxidase on nanocrystal gold–carbon paste electrodes. Sens. Actuators, B 113:272

    Article  Google Scholar 

  28. Nakatani HS, dos Santos LV, Pelegrine CP, Terezinha S, Gomes M, Matsushita M, de Souza NE, Visentainer JV (2005) Biosensor based on xanthine oxidase for monitoring hypoxanthine in fish meat. 1 (2): 85.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ülkü Anik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anik, Ü., Çevik, S. Double-walled carbon nanotube based carbon paste electrode as xanthine biosensor. Microchim Acta 166, 209–213 (2009). https://doi.org/10.1007/s00604-009-0190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0190-y

Keywords

Navigation