Skip to main content
Log in

A Further Improved Maximum Tangential Stress Criterion for Assessing Mode I Fracture of Rocks Considering Non-singular Stress Terms of the Williams Expansion

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Previous studies showed that the modified maximum tangential stress (MMTS) criterion considering two stress terms (containing r−1/2 and r1/2) of the well-known Williams series expansion can better assess the mode I fracture toughness (KIc) of rocks than the traditional maximum tangential stress (MTS) criterion. However, this study indicates that in some cases, only using the two stress terms cannot fully describe the tangential stress at the critical distance for rock specimens, and the higher order, non-singular stress terms can also play important roles in the tangential stress. The MMTS fracture criterion might still induce non-negligible errors for assessing mode I rock fracture. Thus, we propose a further improved MTS (FIMTS) criterion. The FIMTS criterion emphasizes that the number of non-singular stress terms used in a MTS-based criterion should be carefully chosen according to the following principle: the tangential stress at the critical distance can be accurately described using the selected stress terms. Mode I fracture tests on two kinds of rocks are conducted using a newly proposed V-notched short rod bend (VNSRB) specimen. The specimen- or loading-configuration-dependence of KIc indicated by the experimental data is theoretically assessed using the traditional MTS, the MMTS and the FIMTS criteria, and the last criterion is shown to be the best. Therefore, considering non-singular stress terms of the Williams expansion can better assess mode I fracture of rocks. Our study calls for more attention to the effects of non-singular stress terms on mode I fracture of rocks, especially for small-size specimens and for rocks with relatively large critical distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

A 1, A 2, A 3, …, A n, B n :

Coefficients of the crack tip asymptotic field

A :

Crack length

a 0 :

Initial length of V-shaped crack/notch

a 1 :

Final length of V-shaped crack/notch

a c :

Critical crack length

B :

Thickness of specimen

CB:

Chevron bend

CCNBD:

Cracked chevron notched Brazilian disc

CCNSCB:

Cracked chevron notched semi-circular bend

CSTBD:

Cracked straight-through Brazilian disc

D :

Diameter of specimen

ECT:

Edge-cracked triangular

FBD:

Flattened Brazilian disc

FEM:

Finite element modeling

FIMTS:

Further improved maximum tangential stress

H :

Height of specimen

ISRM:

International Society for Rock Mechanics

K I :

Mode I stress intensity factor

K Ic :

Mode I fracture toughness

MMTS:

Modified maximum tangential stress

MR:

Modified ring

MTS:

Maximum tangential stress

n :

The ordinal number of a term

P :

Load on specimen

P max :

Maximum load

R :

Radius of specimen

R 0 :

The reference specimen radius (= 1 m)

r :

Distance from the crack tip

r c :

Critical distance

S :

Support span

SCB:

Semi-circular bend

SIF:

Stress intensity factor

SNDB:

Straight-notched disc bend

SR:

Short rod

Y :

Normalized stress intensity factor

Y c :

Critical normalized stress intensity factor

α :

Normalized crack length

α 0 :

Normalized initial length of V-shaped crack/notch

α 1 :

Normalized final length of V-shaped crack/notch

α c :

Critical normalized crack length

β :

Angle between the notch edge and the end face of the specimen

σ t :

Tensile strength

σ x, σ y, τxy :

Stresses

τ θθ :

Tangential stress

τ θθc :

Critical tangential stress

θ :

Direction of fracture in polar coordinates

References

  • Akbardoost J, Ayatollahi MR (2014) Experimental analysis of mixed mode crack propagation in brittle rocks: the effect of non-singular terms. Eng Fract Mech 129:77–89

    Article  Google Scholar 

  • Akbardoost J, Ayatollahi MR, Aliha MRM, Pavier MJ, Smith DJ (2014) Size-dependent fracture behavior of Guiting limestone under mixed mode loading. Int J Rock Mech Min Sci 71:369–380

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR (2011) Mixed mode I/II brittle fracture evaluation of marble using SCB specimen. Procedia Eng 10:311–318

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR (2013) Two-parameter fracture analysis of SCB rock specimen under mixed mode loading. Eng Fract Mech 103:115–123

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR (2014) Rock fracture toughness study using cracked chevron notched Brazilian disc specimen under pure modes I and II loading—a statistical approach. Theor Appl Fract Mech 69:17–25

    Article  Google Scholar 

  • Aliha MRM, Bahmani A (2017) Rock fracture toughness study under mixed mode I/III loading. Rock Mech Rock Eng 50(7):1739–1751

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Smith DJ, Pavier MJ (2010) Geometry and size effects on fracture trajectory in a limestone rock under mixed mode loading. Eng Fract Mech 77(11):2200–2212

    Article  Google Scholar 

  • Aliha MRM, Sistaninia M, Smith DJ, Pavier MJ, Ayatollahi MR (2012a) Geometry effects and statistical analysis of mode I fracture in guiting limestone. Int J Rock Mech Min Sci 51:128–135

    Article  Google Scholar 

  • Aliha MRM, Ayatollahi MR, Akbardoost J (2012b) Typical upper bound-lower bound mixed mode fracture resistance envelopes for rock material. Rock Mech Rock Eng 45:65–74

    Article  Google Scholar 

  • Aliha MRM, Hosseinpour GR, Ayatollahi MR (2013) Application of cracked triangular specimen subjected to three-point bending for investigating fracture behavior of rock materials. Rock Mech Rock Eng 46(5):1023–1034

    Article  Google Scholar 

  • Ayatollahi MR, Akbardoost J (2014) Size and geometry effects on rock fracture toughness: mode I fracture. Rock Mech Rock Eng 47:677–687

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2008) On the use of Brazilian disc specimen for calculating mixed mode I–II fracture toughness of rock materials. Eng Fract Mech 75:4631–4641

    Article  Google Scholar 

  • Ayatollahi MR, Aliha MRM (2009) Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion. Int J of Solids Struct 46:311–321

    Article  Google Scholar 

  • Ayatollahi MR, Nejati M (2011) An over-deterministic method for calculation of coefficients of crack tip asymptotic field from finite element analysis. Fatigue Fract Eng Mater Struct 34:159–176

    Article  Google Scholar 

  • Ayatollahi MR, Razavi SMJ, Rashidi Moghaddam M, Berto F (2015) Mode I fracture analysis of polymethylmethacrylate using modified energy-based models. Phys Mesomech 18(4):326–336

    Article  Google Scholar 

  • Ayatollahi MR, Mahdavi E, Alborzi MJ, Obara Y (2016) Stress intensity factors of semi-circular bend specimens with straight-through and chevron notches. Rock Mech Rock Eng 49(4):1161–1172

    Article  Google Scholar 

  • Barsoum RS (1977) Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements. Int J Numer Meth Eng 11(1):85–98

    Article  Google Scholar 

  • Bazant ZP, Kazemi MT (1990) Determination of fracture energy, process zone length and brittleness number from size effect, with application to rock and concrete. Int J Fract 44:111–131

    Article  Google Scholar 

  • Berto F, Ayatollahi MR, Borsato T, Ferro P (2016) Local strain energy density to predict size-dependent brittle fracture of cracked specimens under mixed mode loading. Theor Appl Fract Mech 86:217–224

    Article  Google Scholar 

  • Bieniawski ZT, Bernede MJ (1979) Suggested methods for determining the uniaxial compressive strength and deformability of rock materials: Part 1. Suggested method for determining deformability of rock materials in uniaxial compression. Int J Rock Mech Min Sci Geomech Abstr Pergamon 16(2):138–140

    Article  Google Scholar 

  • Chang SH, Lee CI, Jeon S (2002) Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens. Eng Geol 66:79–97

    Article  Google Scholar 

  • Cornetti P, Pugno N, Carpinteri A, Taylor D (2006) Finite fracture mechanics: a coupled stress and energy failure criterion. Eng Fract Mech 73(14):2021–2033

    Article  Google Scholar 

  • Dai F, Chen R, Iqbal MJ, Xia K (2010) Dynamic cracked chevron notched Brazilian disc method for measuring rock fracture parameters. Int J Rock Mech Min Sci 47(4):606–613

    Article  Google Scholar 

  • Dai F, Wei MD, Xu NW, Ma Y, Yang DS (2015) Numerical assessment of the progressive rock fracture mechanism of cracked chevron notched Brazilian disc specimens. Rock Mech Rock Eng 48(2):463–479

    Article  Google Scholar 

  • Dai F, Xu Y, Zhao T, Xu NW, Liu Y (2016) Loading-rate-dependent progressive fracturing of cracked chevron-notched Brazilian disc specimens in split Hopkinson pressure bar tests. Int J Rock Mech Min Sci 88:49–60

    Article  Google Scholar 

  • Du HB, Dai F, Xia KW, Xu NW, Xu Y (2017) Numerical investigation on the dynamic progressive fracture mechanism of cracked chevron notched semi-circular bend specimens in split Hopkinson pressure bar tests. Eng Fract Mech 184:202–217

    Article  Google Scholar 

  • Fowell RJ (1995) ISRM commission on testing methods. Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. Int J Rock Mech Min Sci Geomech Abstr 32(1):57–64

    Article  Google Scholar 

  • Funatsu T, Kuruppu MD, Matsui K (2014) Effects of temperature and confining pressure on mixed-mode (I–II) and mode II fracture toughness of Kimachi sandstone. Int J Rock Mech Min Sci 67:1–8

    Article  Google Scholar 

  • Funatsu T, Shimizu N, Kuruppu M, Matsui K (2015) Evaluation of mode I fracture toughness assisted by the numerical determination of K-resistance. Rock Mech Rock Eng 48:143–157

    Article  Google Scholar 

  • Hu X, Duan K (2008) Size effect and quasi-brittle fracture: the role of FPZ. Int J Fract 154:3–14

    Article  Google Scholar 

  • ISRM (1978) Suggested methods for determining tensile strength of rock materials. Int J Rock Mech Min Sci Geomech Abstr 15(15):99–103

    Google Scholar 

  • Keles C, Tutluoglu L (2011) Investigation of proper specimen geometry for mode I fracture toughness testing with flattened Brazilian disc method. Int J Fract 169(1):61–75

    Article  Google Scholar 

  • Khan K, Al-Shayea NA (2000) Effect of specimen geometry and testing method on mixed mode I–II fracture toughness of a limestone rock from Saudi Arabia. Rock Mech Rock Eng 33(3):179–206

    Article  Google Scholar 

  • Kuruppu MD (1997) Fracture toughness measurement using chevron notched semi-circular bend specimen. Int J Fract 86(4):33–38

    Google Scholar 

  • Kuruppu MD, Chong KP (2012) Fracture toughness testing of brittle materials using semi-circular bend (SCB) specimen. Eng Fract Mech 91:133–150

    Article  Google Scholar 

  • Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2014) ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen. Rock Mech Rock Eng 47:267–274

    Article  Google Scholar 

  • Lim IL, Johnston IW, Choi SK (1994) Assessment of mixed mode fracture toughness testing methods for rock. Int J Rock Mech Min Sci Geomech Abstr 31(3):265–272

    Article  Google Scholar 

  • Ouchterlony F (1988) ISRM commission on testing methods. Suggested methods for determining fracture toughness of rock. Int J Rock Mech Min Sci Geomech Abstr 25:71–96

    Google Scholar 

  • Rashidi Moghaddam M, Ayatollahi MR, Berto F (2017) The application of strain energy density criterion to fatigue crack growth behavior of cracked components. Theor Appl Fract Mech. https://doi.org/10.1016/j.tafmec.2017.07.014

    Article  Google Scholar 

  • Razavi SMJ, Aliha MRM, Berto F (2017) Application of an average strain energy density criterion to obtain the mixed mode fracture load of granite rock tested with the cracked asymmetric four-point bend specimens. Theor Appl Fract Mech. https://doi.org/10.1016/j.tafmec.2017.07.004

    Article  Google Scholar 

  • Tada H, Paris PC, Irwin GR (1985) The stress analysis of cracks handbook, 2nd edn. Paris Productions Inc., St. Louis

    Google Scholar 

  • Tutluoglu L, Keles C (2011) Mode I fracture toughness determination with straight notched disk bending method. Int J Rock Mech Min Sci 48(8):1248–1261

    Article  Google Scholar 

  • Tutluoglu L, Keles C (2012) Effects of geometric factors on mode I fracture toughness for modified ring tests. Int J Rock Mech Min Sci 51:149–161

    Article  Google Scholar 

  • Wei MD, Dai F, Xu NW, Xu Y, Xia K (2015) Three-dimensional numerical evaluation of the progressive fracture mechanism of cracked chevron notched semi-circular bend rock specimens. Eng Fract Mech 134:286–303

    Article  Google Scholar 

  • Wei MD, Dai F, Xu NW, Zhao T (2016a) Stress intensity factors and fracture process zones of ISRM-suggested chevron notched specimens for mode I fracture toughness testing of rocks. Eng Fract Mech 168:174–189

    Article  Google Scholar 

  • Wei MD, Dai F, Xu NW, Liu JF, Xu Y (2016b) Experimental and numerical study on the cracked chevron notched semi-circular bend method for characterizing the mode I fracture toughness of rocks. Rock Mech Rock Eng 49:1595–1609

    Article  Google Scholar 

  • Wei MD, Dai F, Xu NW, Liu Y, Zhao T (2017) Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion. Eng Fract Mech 186:21–38

    Article  Google Scholar 

  • Wei MD, Dai F, Xu NW, Liu Y, Zhao T (2018) A novel chevron notched short rod bend method for measuring the mode I fracture toughness of rocks. Eng Fract Mech 190:1–15

    Article  Google Scholar 

  • Williams ML (1957) On the stress distribution at the base of a stationary crack. J Appl Mech 24:109–114

    Google Scholar 

  • Xu C, Fowell RJ (1994) Stress intensity factor evaluation for cracked chevron notched Brazilian disc specimen. Int J Rock Mech Min Sci Geomech Abstr 31:157–162

    Article  Google Scholar 

  • Xu NW, Dai F, Wei MD, Xu Y, Zhao T (2016a) Numerical observation of three-dimensional wing cracking of cracked chevron notched Brazilian disc rock specimen subjected to mixed mode loading. Rock Mech Rock Eng 49(1):79–96

    Article  Google Scholar 

  • Xu Y, Dai F, Zhao T, Xu NW, Liu Y (2016b) Fracture toughness determination of cracked chevron notched Brazilian disc rock specimen via Griffith energy criterion incorporating realistic fracture profiles. Rock Mech Rock Eng 49(8):3083–3093

    Article  Google Scholar 

  • Xu Y, Dai F, Xu NW, Zhao T (2016c) Numerical investigation of dynamic rock fracture toughness determination using a semi-circular bend specimen in split Hopkinson pressure bar testing. Rock Mech Rock Eng 49(3):731–745

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Program on Key Basic Research Project (no. 2015CB057903), the National Natural Science Foundation of China (no. 51779164) and the Graduate Student’s Research and Innovation Fund of Sichuan University (no. 2018YJSY012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Dai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, MD., Dai, F., Zhou, JW. et al. A Further Improved Maximum Tangential Stress Criterion for Assessing Mode I Fracture of Rocks Considering Non-singular Stress Terms of the Williams Expansion. Rock Mech Rock Eng 51, 3471–3488 (2018). https://doi.org/10.1007/s00603-018-1524-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1524-z

Keywords

Navigation