Skip to main content

Advertisement

Log in

Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Surgical treatment for lower back pain related to degenerative disc disease commonly includes discectomy and spinal fusion. While surgical intervention may provide short-term pain relief, it results in altered biomechanics of the spine and may lead to further degenerative changes in adjacent segments. One non-fusion technique currently being investigated is nucleus pulposus (NP) support via either an injectable hydrogel or tissue engineered construct. A major challenge for either approach is to mimic the mechanical properties of native NP. Here we adopt an unconfined compression testing configuration to assess toe-region and linear-region modulus and Poisson’s ratio, key functional parameters for NP replacement. Human NP, experimental biocompatible hydrogel formulations composed of hyaluronic acid (HA), PEG-g-chitosan, and gelatin, and conventional alginate and agarose gels were investigated as injectable NP replacements or tissue engineering scaffolds. Testing consisted of a stress-relaxation experiment of 5% strain increments followed by 5-min relaxation periods to a total of 25% strain. Human NP had an average linear-region modulus of 5.39 ± 2.56 kPa and a Poisson’s ratio of 0.62 ± 0.15. The modulus and Poisson’s ratio are important parameters for evaluating the design of implant materials and scaffolds. The synthetic HA-based hydrogels approximated NP well and may serve as suitable NP implant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Argoubi M, Shirazi-Adl A (1996) Poroelastic creep response analysis of a lumbar motion segment in compression. J Biomech 29:1331–1339

    Article  PubMed  CAS  Google Scholar 

  2. Ateshian GA, Chahine NO, Basalo IM, Hung CT (2004) The correspondence between equilibrium biphasic and triphasic material properties in mixture models of articular cartilage. J Biomech 37:391–400

    Article  PubMed  Google Scholar 

  3. Bain A, Sherman T, Norton B (2000) A comparison of the viscoelastic behavior of the lumbar intervertebral disc before and after the implantation of a prosthetic disc nucleus. In: Advances in bioengineering. ASME, New Orleans, pp 203–204

  4. Bao QB, McCullen GM, Higham PA, Dumbleton JH, Yuan HA (1996) The artificial disc: theory, design and materials. Biomaterials 17:1157–1167

    Article  PubMed  CAS  Google Scholar 

  5. Bao QB, Yuan HA (2002) New technologies in spine: nucleus replacement. Spine 27:1245–1247

    Article  PubMed  Google Scholar 

  6. Bao QB, Yuan HA (2002) Prosthetic disc replacement: the future? Clin Orthop Relat Res 394:139–145

    Article  PubMed  Google Scholar 

  7. Bertagnoli R, Sabatino CT, Edwards JT, Gontarz GA, Prewett A, Parsons JR (2005) Mechanical testing of a novel hydrogel nucleus replacement implant. Spine J 5:672–681

    Article  PubMed  Google Scholar 

  8. Boyd LM, Carter AJ (2006) Injectable biomaterials and vertebral endplate treatment for repair and regeneration of the intervertebral disc. Eur Spine J 15(Suppl 3):414–421

    Article  Google Scholar 

  9. Chen W, Abrahams J Biopolymer systems for tissue sealing. In: US11/379 (ed)

  10. Chen W, Abrahams J Composition and method for vascular embolization. In: US11/447 (ed)

  11. Di Martino A, Vaccaro AR, Lee JY, Denaro V, Lim MR (2005) Nucleus pulposus replacement: basic science and indications for clinical use. Spine 30:S16–S22

    Article  PubMed  Google Scholar 

  12. Drury JL, Dennis RG, Mooney DJ (2004) The tensile properties of alginate hydrogels. Biomaterials 25:3187–3199

    Article  PubMed  CAS  Google Scholar 

  13. Elliott DM, Guilak F, Vail TP, Wang JY, Setton LA (1999) Tensile properties of articular cartilage are altered by meniscectomy in a canine model of osteoarthritis. J Orthop Res 17:503–508

    Article  PubMed  CAS  Google Scholar 

  14. Elliott DM, Narmoneva DA, Setton LA (2002) Direct measurement of the Poisson’s ratio of human patella cartilage in tension. J Biomech Eng 124:223–228

    Article  PubMed  Google Scholar 

  15. Elliott DM, Setton LA (2001) Anisotropic and inhomogeneous tensile behavior of the human anulus fibrosus: experimental measurement and material model predictions. J Biomech Eng 123:256–263

    Article  PubMed  CAS  Google Scholar 

  16. Goel VK, Kong W, Han JS, Weinstein JN, Gilbertson LG (1993) Combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine 18:1531–1541

    Article  PubMed  CAS  Google Scholar 

  17. Gokorsch S, Nehring D, Grottke C, Czermak P (2004) Hydrodynamic stimulation and long term cultivation of nucleus pulposus cells: a new bioreactor system to induce extracellular matrix synthesis by nucleus pulposus cells dependent on intermittent hydrostatic pressure. Int J Artif Organs 27:962–970

    PubMed  CAS  Google Scholar 

  18. Horner HA, Roberts S, Bielby RC, Menage J, Evans H, Urban JP (2002) Cells from different regions of the intervertebral disc: effect of culture system on matrix expression and cell phenotype. Spine 27:1018–1028

    Article  PubMed  Google Scholar 

  19. Horner HA, Urban JP (2001) 2001 Volvo award winner in basic science studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26:2543–2549

    Article  PubMed  CAS  Google Scholar 

  20. Huang RC, Wright TM, Panjabi MM, Lipman JD (2005) Biomechanics of nonfusion implants. Orthop Clin North Am 36:271–280

    Article  PubMed  Google Scholar 

  21. Iatridis JC, Laible JP, Krag MH (2003) Influence of fixed charge density magnitude and distribution on the intervertebral disc: applications of a poroelastic and chemical electric (PEACE) model. J Biomech Eng 125:12–24

    Article  PubMed  Google Scholar 

  22. Iatridis JC, Weidenbaum M, Setton LA, Mow VC (1996) Is the nucleus pulposus a solid or a fluid? Mechanical behaviors of the nucleus pulposus of the human intervertebral disc. Spine 21(10):1174–1184

    Article  PubMed  CAS  Google Scholar 

  23. Johannessen W, Vresilovic EJ, Seguritan JA, Elliott DM (2004) Altered nucleus pulposus mechanics using chondroitinase-abc and genipin as a model of early disc degeneration. In: Transactions of the Orthopaedic Research Society, vol 29, p 1150

  24. Johannessen W, Elliott DM (2005) Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine 30:E724–E729

    Article  PubMed  Google Scholar 

  25. Joshi A, Fussell G, Thomas J, Hsuan A, Lowman A, Karduna A, Vresilovic E, Marcolongo M (2006) Functional compressive mechanics of a PVA/PVP nucleus pulposus replacement. Biomaterials 27:176–184

    Article  PubMed  CAS  Google Scholar 

  26. Joshi A, Mehta S, Vresilovic E, Karduna A, Marcolongo M (2005) Nucleus implant parameters significantly change the compressive stiffness of the human lumbar intervertebral disc. J Biomech Eng 127:536–540

    Article  PubMed  Google Scholar 

  27. Jurvelin JS, Buschmann MD, Hunziker EB (1997) Optical and mechanical determination of Poisson’s ratio of adult bovine humeral articular cartilage. J Biomech 30:235–241

    Article  PubMed  CAS  Google Scholar 

  28. Kelly TA, Ng KW, Wang CC, Ateshian GA, Hung CT (2006) Spatial and temporal development of chondrocyte-seeded agarose constructs in free-swelling and dynamically loaded cultures. J Biomech 39:1489–1497

    Article  PubMed  Google Scholar 

  29. Klara PM, Ray CD (2002) Artificial nucleus replacement: clinical experience. Spine 27:1374–1377

    Article  PubMed  Google Scholar 

  30. Korhonen RK, Laasanen MS, Toyras J, Rieppo J, Hirvonen J, Helminen HJ, Jurvelin JS (2002) Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentation. J Biomech 35:903–909

    Article  PubMed  CAS  Google Scholar 

  31. Larson JW, Chadderon RC, Georgescu H, Lee D, Hubert M, Werkmeister-Lewis L, Irrang J, Gilbertson LG, Kang JD (2006) Prevention of intervertebral disc degeneration after surgical discectomy using an injectable nucleus pulposus prosthesis. In: Proceedings of the 52nd annual meeting of the orthopaedic research society, Chicago, p 1237

  32. Leahy JC, Hukins DWL (2001) Viscoelastic properties of the nucleus pulposus of the intervertebral disk in compression. J Mater Sci: Mater Med 12:689–692

    Article  CAS  Google Scholar 

  33. Lee CK, Kim YE, Lee CS, Hong YM, Jung JM, Goel VK (2000) Impact response of the intervertebral disc in a finite-element model. Spine 25:2431–2439

    Article  PubMed  CAS  Google Scholar 

  34. LeRoux MA, Guilak F, Setton LA (1999) Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res 47:46–53

    Article  PubMed  CAS  Google Scholar 

  35. Lu YM, Hutton WC, Gharpuray VM (1998) The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression. J Biomech Eng 120:48–54

    PubMed  CAS  Google Scholar 

  36. Malhotra N, Beckstein J, Cloyd JM, Johannessen WJ, Chen W, Elliott DM (2006) Injectable hydrogels to support nucleus pulposus function. Pennsylvania Neurological Society, Harrisburg, PA

    Google Scholar 

  37. Martinez JB, Oloyede VO, Broom ND (1997) Biomechanics of load-bearing of the intervertebral disc: an experimental and finite element model. Med Eng Phys 19:145–156

    Article  PubMed  CAS  Google Scholar 

  38. Mauck RL, Soltz MA, Wang CC, Wong DD, Chao PH, Valhmu WB, Hung CT, Ateshian GA (2000) Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J Biomech Eng 122:252–260

    Article  PubMed  CAS  Google Scholar 

  39. Mizuno H, Roy AK, Vacanti CA, Kojima K, Ueda M, Bonassar LJ (2004) Tissue-engineered composites of anulus fibrosus and nucleus pulposus for intervertebral disc replacement. Spine 29:1290–1297; discussion 1297–1298

    Article  PubMed  Google Scholar 

  40. Mizuno H, Roy AK, Zaporojan V, Vacanti CA, Ueda M, Bonassar LJ (2006) Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs. Biomaterials 27:362–370

    Article  PubMed  CAS  Google Scholar 

  41. Natarajan RN, Ke JH, Andersson GBJ (1994) A model to study the disc degeneration process. Spine 19:259–265

    Article  PubMed  CAS  Google Scholar 

  42. Rowley JA, Mooney DJ (2002) Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res 60:217–223

    Article  PubMed  CAS  Google Scholar 

  43. Sato M, Kikuchi T, Asazuma T, Yamada H, Maeda H, Fujikawa K (2001) Glycosaminoglycan accumulation in primary culture of rabbit intervertebral disc cells. Spine 26:2653–2660

    Article  PubMed  CAS  Google Scholar 

  44. Shirazi-Adl A (1989) On the fibre composite material models of disc annulus—comparison of predicted stresses. J Biomech 22:357–365

    Article  PubMed  CAS  Google Scholar 

  45. Thomas J, Lowman A, Marcolongo M (2003) Novel associated hydrogels for nucleus pulposus replacement. J Biomed Mater Res A 67:1329–1337

    Article  PubMed  CAS  Google Scholar 

  46. Thonar E, An H, Masuda K (2002) Compartmentalization of the matrix formed by nucleus pulposus and annulus fibrosus cells in alginate gel. Biochem Soc Trans 30:874–878

    Article  PubMed  CAS  Google Scholar 

  47. Umehara S, Tadano S, Abumi K, Katagiri K, Kaneda K, Ukai T (1996) Effects of degeneration on the elastic modulus distribution in the lumbar intervertebral disc. Spine 21:811–819; discussion 820

    Google Scholar 

  48. Vincent J (1990) Structural biomaterials, revised edition. Princeton University Press, Princeton, NJ

    Google Scholar 

  49. Wang CC, Chahine NO, Hung CT, Ateshian GA (2003) Optical determination of anisotropic material properties of bovine articular cartilage in compression. J Biomech 36:339–353

    Article  PubMed  Google Scholar 

  50. Weng LH, Pan H, Chen W (2007) Crosslinked hydrogels composed of partially oxidized hyaluronan and gelatin: in vitro and in vivo responses. J Biomed Biomater Res. Part A (in press)

  51. Wenger KH, Schlegel JD (1997) Annular bulge contours from an axial photogrammetric method. Clin Biomech (Bristol, Avon) 12:438–444

    Article  Google Scholar 

  52. Wilke HJ, Kavanagh S, Neller S, Haid C, Claes LE (2001) Effect of a prosthetic disc nucleus on the mobility and disc height of the L4-5 intervertebral disc postnucleotomy. J Neurosurg 95:208–214

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Neurosurgery Research and Education Foundation (NRM) and the National Institutes of Health AR 50052 (DME) for supporting this study. Partial support was also provided by DK068401 (WC). We thank the National Disease Research Interchange and the International Institute for the Advancement of Medicine for providing the human tissue. The authors would also like to acknowledge Nandan Nerurkar for his help with sample preparation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn M. Elliott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cloyd, J.M., Malhotra, N.R., Weng, L. et al. Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds. Eur Spine J 16, 1892–1898 (2007). https://doi.org/10.1007/s00586-007-0443-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-007-0443-6

Keywords

Navigation