Skip to main content

Advertisement

Log in

Do autologous growth factors enhance transforaminal lumbar interbody fusion?

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Pseudarthrosis remains a significant problem in spinal fusion. The objective of our study was to investigate the effects of autologous growth factors (AGF) in instrumented transforaminal lumbar interbody spinal fusion (TLIF). A prospective review was carried out of 23 patients who underwent TLIF with application of AGF, with a minimum 2-year follow-up. Comparison with our historical cohort (without AGF application) was performed. Mean age at surgery was 44.3 years in the AGF treatment group. Twelve had a positive smoking history. Fourteen had undergone previous spinal surgeries. Thirteen received one-level fusions and ten received two-level fusions. The radiographic results showed a fusion rate of 100% in one-level fusions and 90% in two-level fusions. There was no significant difference in pseudarthrosis rates between the AGF treatment group and historical cohort. Excluding the cases with pseudarthrosis, there was faster bony healing in patients who had been treated with AGF application. This study indicates that although AGF may demonstrate faster fusions, it does not result in an overall increase in spinal fusion rates. Further studies are needed before AGF can routinely be used as an adjunct in spinal fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. An HS, Lynch K, Toth J (1995) Prospective comparison of autograft vs allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts. J Spinal Disord 8:131–135

    CAS  PubMed  Google Scholar 

  2. Arm DM (2000) A comparison of autologous growth factors (AGFTM) and platelet gel. Presented at the 16th International Symposium—Bone growth Factors and Substitutes, Coronado

  3. Arm DM, Lowery GL, Hood AG, Shors EC (1999) Characterization of an autologous platelet gel containing multiple growth factors. Presented at the 45th Orthopaedic Research Society Meeting, Anaheim

  4. Arm DM, Ponticiello M, Shors EC (2001) Autologous growth factors: characterization and clinical use. J Bone Joint Surg Br 83 [Suppl III]:366

  5. Boden SD, Zdeblick TA, Sandhu HS, Heim SE (2000) The use of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 25:376–381

    Article  CAS  PubMed  Google Scholar 

  6. Bostrom MP, Camacho NP (1998) Potential role of bone morphogenetic proteins in fracture healing. Clin Orthop 355 [Suppl]:274–282

    Google Scholar 

  7. Buckwalter JA, Cruess RL (1991) Healing of the musculoskeletal tissues. In: Rockwood CA, Green DP (eds) Fractures in adults. JB Lippincott, Philadelphia, pp 181–222

  8. Buckwalter JA, Glimcher MJ, Cooper RR, Recker R (1995) Bone biology. II. Formation, form, modeling, remodeling, regulation of cell function. J Bone Joint Surg Am 77:1276–1289

    Google Scholar 

  9. Canalis E (1985) Effect of growth factors on bone cell replication and differentiation. Clin Orthop 193:246–263

    CAS  PubMed  Google Scholar 

  10. Canalis E, McCarthy TL, Centrella M (1989) Effects of platelet derived growth factor on bone formation in vitro. J Cell Physiol 140:530–537

    CAS  PubMed  Google Scholar 

  11. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    CAS  PubMed  Google Scholar 

  12. Centrella M (1989) Platelet-derived growth factor enhances deoxyribonucleic acid and collagen synthesis in osteoblast-enriched cultures from fetal rat parietal bone. Endocrinology 125:13–19

    CAS  PubMed  Google Scholar 

  13. Curylo LJ, Johnstone B, Petersilge CA, Janicki JA, Yoo JU (1999) Augmentation of spinal arthrodesis with autologous bone marrow in a rabbit posterolateral spine fusion model. Spine 24:434–439

    Article  CAS  PubMed  Google Scholar 

  14. De Palma AF (1968) The nature of pseudoarthrosis. Clin Orthop 59:113–118

    PubMed  Google Scholar 

  15. Eie N, Solgaard T, Kleppe H (1983) The knee-elbow position in lumbar disc surgery: a review of complications. Spine 8:897–900

    CAS  PubMed  Google Scholar 

  16. Fujimaki A, Crock HV, Bedbrook GM (1982) The results of 150 anterior lumbar interbody fusion operations performed by two surgeons in Australia. Clin Orthop 165:164–167

    PubMed  Google Scholar 

  17. Gertzbein SD, Betz R, Clements D, Errico T, Hammerberg K, Robbins S, Shepherd E, Weber A, Kerina M, Albin J, Wolk D, Ensor K (1996) Semirigid instrumentation in the management of lumbar spinal conditions combined with circumferential fusion. A multicenter study. Spine 21:1918–1926

    Article  CAS  PubMed  Google Scholar 

  18. Gospodarowicz D (1983) Growth factors and their action in vivo and in vitro. J Pathol 141:201–233

    CAS  PubMed  Google Scholar 

  19. Hee HT, Castro FP, Majd ME, Holt RT, Myers L (2001) Anterior/posterior lumbar fusion versus transforaminal lumbar interbody fusion: analysis of complications and predictive factors. J Spinal Disord 14:533–540

    Article  CAS  PubMed  Google Scholar 

  20. Howes R, Bowness JM, Grotendorst GR, Martin GR, Reddi AH (1988) Platelet derived growth factor enhances demineralized bone matrix induced cartilage and bone formation. Calcif Tissue Int 42:34–38

    CAS  PubMed  Google Scholar 

  21. Joyce ME, Jingushi S, Scully SP, Bolander ME (1991) Role of growth factors in fracture healing. Prog Clin Biol Res 365:391–416

    CAS  PubMed  Google Scholar 

  22. Kasperk CH, Wergedal JE, Mohan S, Long DL, Lau KH, Baylink DJ (1990) Interactions of growth factors present in bone matrix with bone cells: effects on DNA synthesis and alkaline phosphatase. Growth Factors 3:147–158

    CAS  PubMed  Google Scholar 

  23. Kozak JA, O'Brien JP (1990) Simultaneous combined anterior and posterior fusion. An independent analysis of a treatment of the disabled low-back pain patient. Spine 15:322–328

    Google Scholar 

  24. Lane JM (2001) BMPs: why are they not in everyday use? J Bone Joint Surg Am 83 [Suppl 1]:161–163

    Google Scholar 

  25. Lane JM, Tomin E, Bostrom MP (1999) Biosynthetic bone grafting. Clin Orthop 367 [Suppl]:107–117

    Google Scholar 

  26. Lin P, Cautilli R, Joyce M (1983) Posterior lumbar interbody fusion. Clin Orthop 180:154–167

    PubMed  Google Scholar 

  27. Lindholm TS, Ragni P, Lindholm TC (1988) Response of bone marrow stroma cells to dimineralized cortical bone matrix in experimental spinal fusion in rabbits. Clin Orthop 230:296–302

    PubMed  Google Scholar 

  28. Lowe TG, Tahernia AD, O'Brien MF, Smith DAB (2002) Unilateral transforaminal posterior lumbar interbody fusion (TLIF): indications, technique, and 2-year results. J Spinal Disord Tech 15:31–38

    PubMed  Google Scholar 

  29. Lowery GL, Kulkarni S, Pennisi AE (1999) Use of autologous growth factors in lumbar spinal fusion. Bone [Suppl] 25:47–50

    Google Scholar 

  30. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR (1998) Platelet-rich plasma. Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol 85:638-646

    CAS  PubMed  Google Scholar 

  31. Nather A, Hee HT (2002) New frontiers in spinal surgery. In: Nather A (ed) Research methodology in orthopaedics and reconstructive surgery. World Scientific, New Jersey, pp 551–574

  32. Nimni ME (1997) Polypeptide growth factors: targeted delivery systems. Biomaterials 18:1201–1225

    Article  CAS  PubMed  Google Scholar 

  33. Noda M (1998) In vivo stimulation of bone formation by transforming growth factor-β. Endocrinology 124:2991–2994

    Google Scholar 

  34. Pfeilschifter J (1990) Stimulation of bone matrix apposition in vitro by local growth factors: a comparison between insulin-like growth factor I, platelet-derived growth factor, and transforming growth factor-β. Endocrinology 127:69–75

    CAS  PubMed  Google Scholar 

  35. Scott-Young M (2001) Spinal fusion using autologous growth factor. J Bone Joint Surg Br 83 [Suppl III]:366

  36. Seppa H, Grotendorst G, Seppa S, Schiffmann E, Martin GR (1982) Platelet-derived growth factor is chemotactic for fibroblasts. J Cell Biol 92:584–588

    CAS  PubMed  Google Scholar 

  37. Slater M, Patava J, Kingham K, Mason RS (1995) Involvement of platelets in stimulating osteogenic activity. J Orthop Res 13:655–663

    CAS  PubMed  Google Scholar 

  38. Tullberg T, Brandt B, Rydberg J, Fritzell P (1996) Fusion rate after posterior lumbar interbody fusion with carbon fiber implant: 1-year follow-up of 51 patients. Eur Spine J 5:178–182

    CAS  PubMed  Google Scholar 

  39. Vaccaro AR, Ball ST (2000) Indications for instrumentation in degenerative lumbar spinal disorders. Orthopedics 23:260–271

    CAS  PubMed  Google Scholar 

  40. Vaccaro AR, Chiba K, Heller JG, Patel TC, Thalgott JS, Truumees E, Fischgrund JS, Craig MR, Berta SC, Wang JC (2002) Bone grafting alternatives in spinal surgery. Spine J 2:206–215

    Article  Google Scholar 

  41. Walsh WR, Loefler A, Nicklin S, Arm D, Yu Y (2001) Autologous growth factors for use in spinal fusion. J Bone Joint Surg Br 83 [Suppl III]:366–367

  42. Yashiro K, Homma T, Hokari Y, Katsumi Y, Okumura H, Hirano A (1991) The Steffee variable screw placement system using different methods of bone grafting. Spine 16:1329–1334

    CAS  PubMed  Google Scholar 

  43. Zdeblick TA (1993) A prospective randomized study of lumbar fusion. Preliminary results. Spine 18:983–991

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan T. Hee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hee, H.T., Majd, M.E., Holt, R.T. et al. Do autologous growth factors enhance transforaminal lumbar interbody fusion?. Eur Spine J 12, 400–407 (2003). https://doi.org/10.1007/s00586-003-0548-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-003-0548-5

Keywords

Navigation