Skip to main content

Advertisement

Log in

Different subtypes of intraductal papillary mucinous neoplasm in the pancreas have distinct pathways to pancreatic cancer progression

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Intraductal papillary mucinous neoplasm (IPMN) is recognized as a precursor lesion to pancreatic cancer, a unique pathological entity. IPMN has subtypes with different clinical characteristics. However, the molecular mechanisms of cancer progression from IPMN remain largely unknown. In this study we examined the differences in genetic alteration(s) among the IPMN subtypes.

Methods

Surgically resected IPMNs (n = 25) were classified into four subtypes by hematoxylin and eosin (H&E) and mucin immunostaining. Mutations in KRAS, BRAF, and PIK3CA genes and expression of CDKN2A, TP53, SMAD4, phospho-ERK, and phospho-SMAD1/5/8 proteins were examined.

Results

There were 11 gastric, 11 intestinal, one pancreatobiliary, and two oncocytic types in this study. We then compared the two major subtypes, gastric-type and intestinal-type IPMN. Gastric-type IPMN showed a significantly higher incidence of KRAS mutations (9/11, 81.8%) compared with intestinal type (3/11, 27.3%; p < 0.05), although the intestinal type showed a higher grade of dysplasia than gastric type (p < 0.01). All cases with KRAS mutations showed phospho-ERK immunostaining. In contrast, intestinal type (9/11, 81.8%) showed more frequent SMAD1/5/8 phosphorylation compared with gastric-type IPMN (3/11, 27.3%; p < 0.05%).

Conclusions

There may be distinct mechanisms of pancreatic cancer progression in the different subtypes of IPMN. In particular, KRAS mutation and bone morphogenetic protein-SMAD signaling status may be crucial diverging steps for the two representative pathways to pancreatic cancer in IPMN patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMP:

Bone morphogenetic protein

EGFR:

Epidermal growth factor receptor

ERK:

Extracellular signal-regulated kinase

IPMN:

Intraductal papillary mucinous neoplasm

IPMC:

Intraductal papillary mucinous carcinoma

PanIN:

Pancreatic intraepithelial neoplasia

PDAC:

Pancreatic ductal adenocarcinoma

PCR:

Polymerase chain reaction

MPD:

Main pancreatic duct

References

  1. Carpelan-Holmström M, Nordling S, Pukkala E, Sankila R, Lüttges J, Klöppel G, et al. Does anyone survive pancreatic ductal adenocarcinoma? A nationwide study re-evaluating the data of the Finnish Cancer Registry. Gut. 2005;54:385–7.

    Article  PubMed  Google Scholar 

  2. Warshaw A, Fernández-del Castillo C. Pancreatic carcinoma. N Engl J Med. 1992;326:455–65.

    Article  PubMed  CAS  Google Scholar 

  3. Rosewicz S, Wiedenmann B. Pancreatic carcinoma. Lancet. 1997;349:485–9.

    Article  PubMed  CAS  Google Scholar 

  4. Bardeesy N, DePinho R. Pancreatic cancer biology and genetics. Nat Rev Cancer. 2002;2:897–909.

    Article  PubMed  CAS  Google Scholar 

  5. Hruban RH, Takaori K, Klimstra DS, Adsay NV, Albores-Saavedra J, Biankin AV, Biankin SA, et al. An illustrated consensus on the classification of pancreatic intraepithelial neoplasia and intraductal papillary mucinous neoplasms. Am J Surg Pathol. 2004;28:977–87.

    Article  PubMed  Google Scholar 

  6. Adsay N, Merati K, Andea A, Sarkar F, Hruban R, Wilentz R, et al. The dichotomy in the preinvasive neoplasia to invasive carcinoma sequence in the pancreas: differential expression of MUC1 and MUC2 supports the existence of two separate pathways of carcinogenesis. Mod Pathol. 2002;15:1087–95.

    Article  PubMed  Google Scholar 

  7. Tada M, Kawabe T, Arizumi M, Togawa O, Matsubara S, Yamamoto N, et al. Pancreatic cancer in patients with pancreatic cystic lesions: a prospective study in 197 patients. Clin Gastroenterol Hepatol. 2006;4:1265–70.

    Article  PubMed  Google Scholar 

  8. Ohashi K, Murakami F, Maruyama M. Four cases of the mucin-producing cancer of the pancreas on specific findings of the papilla of Vater. Prog Dig Endosc. 1982;20:348–51.

    Google Scholar 

  9. Lüttges J, Zamboni G, Longnecker D, Klöppel G. The immunohistochemical mucin expression pattern distinguishes different types of intraductal papillary mucinous neoplasms of the pancreas and determines their relationship to mucinous noncystic carcinoma and ductal adenocarcinoma. Am J Surg Pathol. 2001;25:942–8.

    Article  PubMed  Google Scholar 

  10. Yonezawa S, Taira M, Osako M, Kubo M, Tanaka S, Sakoda K, et al. MUC-1 mucin expression in invasive areas of intraductal papillary mucinous tumors of the pancreas. Pathol Int. 1998;48:319–22.

    Article  PubMed  CAS  Google Scholar 

  11. Nakamura A, Horinouchi M, Goto M, Nagata K, Sakoda K, Takao S, et al. New classification of pancreatic intraductal papillary-mucinous tumour by mucin expression: its relationship with potential for malignancy. J Pathol. 2002;197:201–10.

    Article  PubMed  Google Scholar 

  12. Furukawa T, Klöppel G, Volkan Adsay N, Albores-Saavedra J, Fukushima N, Horii A, et al. Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study. Virchows Arch. 2005;447:794–9.

    Article  PubMed  Google Scholar 

  13. Adsay N, Merati K, Basturk O, Iacobuzio-Donahue C, Levi E, Cheng J, et al. Pathologically and biologically distinct types of epithelium in intraductal papillary mucinous neoplasms: delineation of an “intestinal” pathway of carcinogenesis in the pancreas. Am J Surg Pathol. 2004;28:839–48.

    Article  PubMed  Google Scholar 

  14. Ban S, Naitoh Y, Mino-Kenudson M, Sakurai T, Kuroda M, Koyama I, et al. Intraductal papillary mucinous neoplasm (IPMN) of the pancreas: its histopathologic difference between 2 major types. Am J Surg Pathol. 2006;30:1561–9.

    Article  PubMed  Google Scholar 

  15. Z’graggen K, Rivera J, Compton C, Pins M, Werner J, Fernández-del Castillo C, et al. Prevalence of activating K-ras mutations in the evolutionary stages of neoplasia in intraductal papillary mucinous tumors of the pancreas. Ann Surg. 1997;226:491–8. (discussion 498-500).

    Article  PubMed  Google Scholar 

  16. Satoh K, Shimosegawa T, Moriizumi S, Koizumi M, Toyota T. K-ras mutation and p53 protein accumulation in intraductal mucin-hypersecreting neoplasms of the pancreas. Pancreas. 1996;12:362–8.

    Article  PubMed  CAS  Google Scholar 

  17. Satoh K, Sawai T, Shimosegawa T, Koizumi M, Yamazaki T, Mochizuki F, et al. The point mutation of c-Ki-ras at codon 12 in carcinoma of the pancreatic head region and in intraductal mucin-hypersecreting neoplasm of the pancreas. Int J Pancreatol. 1993;14:135–43.

    PubMed  CAS  Google Scholar 

  18. Sessa F, Solcia E, Capella C, Bonato M, Scarpa A, Zamboni G, et al. Intraductal papillary-mucinous tumours represent a distinct group of pancreatic neoplasms: an investigation of tumour cell differentiation and K-ras, p53 and c-erbB-2 abnormalities in 26 patients. Virchows Arch. 1994;425:357–67.

    Article  PubMed  CAS  Google Scholar 

  19. Tada M, Omata M, Ohto M. Ras gene mutations in intraductal papillary neoplasms of the pancreas. Analysis in five cases. Cancer. 1991;67:634–7.

    Article  PubMed  CAS  Google Scholar 

  20. Schönleben F, Qiu W, Bruckman K, Ciau N, Li X, Lauerman M, et al. BRAF and KRAS gene mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/IPMC) of the pancreas. Cancer Lett. 2007;249:242–8.

    Article  PubMed  Google Scholar 

  21. Biankin A, Biankin S, Kench J, Morey A, Lee C, Head D, et al. Aberrant p16(INK4A) and DPC4/Smad4 expression in intraductal papillary mucinous tumours of the pancreas is associated with invasive ductal adenocarcinoma. Gut. 2002;50:861–8.

    Article  PubMed  CAS  Google Scholar 

  22. Abe K, Suda K, Arakawa A, Yamasaki S, Sonoue H, Mitani K, et al. Different patterns of p16INK4A and p53 protein expressions in intraductal papillary-mucinous neoplasms and pancreatic intraepithelial neoplasia. Pancreas. 2007;34:85–91.

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi H, Oda T, Hasebe T, Aoyagi Y, Kinoshita T, Konishi M, et al. Biologically different subgroups of invasive ductal carcinoma of the pancreas: Dpc4 status according to the ratio of intraductal carcinoma components. Clin Cancer Res. 2004;10:3772–9.

    Article  PubMed  CAS  Google Scholar 

  24. Schönleben F, Qiu W, Ciau N, Ho D, Li X, Allendorf J, et al. PIK3CA mutations in intraductal papillary mucinous neoplasm/carcinoma of the pancreas. Clin Cancer Res. 2006;12:3851–5.

    Article  PubMed  Google Scholar 

  25. Jaffee E, Hruban R, Canto M, Kern S. Focus on pancreas cancer. Cancer Cell. 2002;2:25–8.

    Article  PubMed  CAS  Google Scholar 

  26. Ishimura N, Yamasawa K, Karim Rumi M, Kadowaki Y, Ishihara S, Amano Y, et al. BRAF and K-ras gene mutations in human pancreatic cancers. Cancer Lett. 2003;199:169–73.

    Article  PubMed  CAS  Google Scholar 

  27. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554.

    Article  PubMed  CAS  Google Scholar 

  28. Tanaka M, Chari S, Adsay V, Fernandez-del Castillo C, Falconi M, Shimizu M, et al. International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology. 2006;6:17–32.

    Article  PubMed  Google Scholar 

  29. Tanaka Y, Kanai F, Tada M, Asaoka Y, Guleng B, Jazag A, et al. Absence of PIK3CA hotspot mutations in hepatocellular carcinoma in Japanese patients. Oncogene. 2006;25:2950–2.

    Article  PubMed  CAS  Google Scholar 

  30. Shao R, Kato N, Lin L, Muroyama R, Moriyama M, Ikenoue T, et al. Absence of tyrosine kinase mutations in Japanese colorectal cancer patients. Oncogene. 2007;26:2133–5.

    Article  PubMed  CAS  Google Scholar 

  31. Ohta M, Sugimoto T, Seto M, Mohri D, Asaoka Y, Tada M, et al. Genetic alterations in colorectal cancers with demethylation of insulin-like growth factor II. Hum Pathol. 2008;39:1301–8.

    Article  PubMed  CAS  Google Scholar 

  32. Andrejevic-Blant S, Kosmahl M, Sipos B, Klöppel G. Pancreatic intraductal papillary-mucinous neoplasms: a new and evolving entity. Virchows Arch. 2007;451:863–9.

    Article  PubMed  Google Scholar 

  33. Naoki K, Chen T, Richards W, Sugarbaker D, Meyerson M. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res. 2002;62:7001–3.

    PubMed  CAS  Google Scholar 

  34. Davies H, Bignell G, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  PubMed  CAS  Google Scholar 

  35. Karnoub A, Weinberg R. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9:517–31.

    Article  PubMed  CAS  Google Scholar 

  36. Chadwick B, Willmore-Payne C, Tripp S, Layfield L, Hirschowitz S, Holden J. Histologic, immunohistochemical, and molecular classification of 52 IPMNs of the pancreas. Appl Immunohistochem Mol Morphol. 2009;17:31–9.

    Article  PubMed  CAS  Google Scholar 

  37. Nakata K, Nagai E, Ohuchida K, Aishima S, Hayashi A, Miyasaka Y, et al. REG4 is associated with carcinogenesis in the ‘intestinal’ pathway of intraductal papillary mucinous neoplasms. Mod Pathol. 2009;22:460–8.

    Article  PubMed  CAS  Google Scholar 

  38. Barros R, Pereira B, Duluc I, Azevedo M, Mendes N, Camilo V, et al. Key elements of the BMP/SMAD pathway co-localize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. J Pathol. 2008;215:411–20.

    Article  PubMed  CAS  Google Scholar 

  39. Adsay N, Pierson C, Sarkar F, Abrams J, Weaver D, Conlon K, et al. Colloid (mucinous noncystic) carcinoma of the pancreas. Am J Surg Pathol. 2001;25:26–42.

    Article  PubMed  CAS  Google Scholar 

  40. Uehara H, Nakaizumi A, Ishikawa O, Iishi H, Tatsumi K, Takakura R, et al. Development of ductal carcinoma of the pancreas during follow-up of branch duct intraductal papillary mucinous neoplasm of the pancreas. Gut. 2008;57:1561–5.

    Article  PubMed  CAS  Google Scholar 

  41. Fernández-del Castillo C, Adsay N. Intraductal papillary mucinous neoplasms of the pancreas. Gastroenterology. 2010;139:708–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Drs. Norihiro Kokudo and Taku Aoki (Hepato-Biliary-Pancreatic Surgery Division, University of Tokyo) for the surgical sample acquisition. We also thank Mitsuko Tsubouchi and Sanae Ogawa for technical assistance. This study was supported by KAKENHI, grants of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT) to M.O., K.K., and H.I.

Conflict of interest

The authors have no competing interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Ijichi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohri, D., Asaoka, Y., Ijichi, H. et al. Different subtypes of intraductal papillary mucinous neoplasm in the pancreas have distinct pathways to pancreatic cancer progression. J Gastroenterol 47, 203–213 (2012). https://doi.org/10.1007/s00535-011-0482-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-011-0482-y

Keywords

Navigation