Skip to main content
Log in

Aseismic slip on the active Sabz-Pushan and Sepidar thrusts, Iran: microstructural and kinematics evidence of the slickenline fibre creep

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

For decades, seismogenic faults of the Zagros orogen that episodically experienced large earthquakes studies in detail; however, the active faults with the aseismic slips have only have been studied as a possible contributor to their seismic hazard assessments. This study identifies the contribution of pressure solution creeps to their seismic hazard assessments. Microscopic measurements of the calcite slickenline fibres on the Sabz-Pushan thrust planes documents a length of 1.28 ± 0.50 mm. Microscopic-scaled stretched calcite length measurements represent the present slip magnitude along with this thrust. This slip magnitude correlates with GPS velocity measurements of the Sabz-Pushan thrust of 1.5 ± 0.2 mm/year. The slip magnitude of the aseismic creep in the Sabz-Pushan thrust is closely associated with postseismic adjustments of the 1824 and 1994 earthquakes. The dynamic fluid flow and fluid circulations of the Mand (Qara Aghj) River along with the Sabz-Pushan and Sepidar thrusts and sub-simple shearing are the main controlling factors in an aseismic slip of the Sabz-Pushan and Sepidar thrusts. These thrusts forming a compressional push-up structure that may be a critical factor in the brittle deformation of the damage zone and ductile flow in-depth on the fault planes. The presence of rotated lens-shaped Type III e-twins within the slickenline fibres on the thrust planes confirms that the depth of aseismic creep occurred at > 400 °C which represents calcite ductile flow of the pressure solution mechanism as a potentially important deformation along with the Zagros thrust system of the Zagros orogen. Analysis of the slickenline fibre orientations indicates that the mean plunge and trend of maximum principal stress (σ1) of the Sabz-Pushan thrust are N31° E–N36° E, sub-horizontal and the mean trend of the minimum principal stress (σ3) is NNW and is sub-vertical. Horizontal maximum principal stress confirms that the Sabz-Pushan characterizes as a dip-slip fault.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allis RG, Shi Y (1995) New insights to temperature and pressure beneath the central Southern Alps, New Zealand. N Z J Geol Geophys 38:585–592

    Article  Google Scholar 

  • Ambraseys NN, Melville CP (1982) A history of Iranian earthquakes. Cambridge University Press, Cambridge, p 219

    Google Scholar 

  • Andalibi A, Yousefi T (1998) Kavar geological map. Geological Survey of Iran. 1:100,000 Series No. 6548 (in Persian)

  • Angelier J (1990) Inversion of field data in fault tectonics to obtain the regional stress III. A new rapid direct inversion method by analytical means. Geophys J Int. https://doi.org/10.1111/j.1365-246X.1990.tb01777

    Article  Google Scholar 

  • Angelier J (1994) Fault slip analysis and palaeostress reconstruction. In: Hancock PL (ed) Continental deformation. Pergamon Press Ltd, pp 53–100

  • Barjasteh A (2019) Influence of geological structure on dam behavior and case studies. In: Dam Engineering. Open access peer-reviewed chapter. https://doi.org/10.5772/intechopen.78742

  • Barnhart WD, Lohman BR (2013) Phantom earthquakes and triggered aseismic creep: vertical partitioning of strain during earthquake sequences in Iran. Geophys Res Lett 40:819–823. https://doi.org/10.1002/grl.50201

    Article  Google Scholar 

  • Berberian M (1995) Master blind thrust faults hidden under Zagros folds active basement tectonics and surface morphotectonics. Tectonophysics 241:193–224

    Article  Google Scholar 

  • Boyer SE, Elliot D (1982) Thrust systems. Am Assoc Pet Geol Bull 66:1196–1230. https://doi.org/10.1016/0040-1951(92)90399-Q

    Article  Google Scholar 

  • Burkhard M (1993) Calcite twins, their geometry, appearance, and significance as stress-strain markers and indicators of the tectonic regime: a review. J Struct Geol 15:351–368

    Article  Google Scholar 

  • Coulomb CA (1776) Essai sur une application des règles de maximis et de minimis à quelques problèmes de statique relatifs à l'architecture. Mémoires de mathématique & de physique, présentés à l'Académie Royale des Sciences par divers savans 7:343–382

  • Davis GH, Reynolds SJ (1996) Structural geology of rocks and regions. John Wiley and Sons Inc, Hoboken

    Google Scholar 

  • De Bresser JHP, Spiers CJ (1997) Strength characteristics of the r, f, and c slip systems in calcite. Tectonophysics 272(1):1–23. https://doi.org/10.1016/S0040-1951(96)00273-9

    Article  Google Scholar 

  • De Paor DG (1983) Orthographic analysis of geological structures—I. Deformation theory. J Struct Geol 5:255–277

    Article  Google Scholar 

  • Engdahl RE, Jackson JA, Myers SC, Bergman EA’, Priestley K (2006) Relocation nd assessment of seismicity in the Iran region. Geophys J Int 167:761–778

    Article  Google Scholar 

  • Erisen B, Akkus I, Uygur N, Kocak A (1996) Turkiye Jeotermal Envanteri. General Directorate of Mineral Research and Exploration, Ankara

  • Faghih A, Nezamzadeh I, Kusky TM (2016) Geomorphometric evidence of an active pop-up structure along the Sabzpushan Fault Zone, Zagros Mountains, SW Iran. J Earth Sci 27(6):945–954

    Article  Google Scholar 

  • Ferrill DA (1991) Calcite twin widths and intensities as metamorphic indicators in natural low-temperature deformation of limestone. J Struct Geol 13:667–675

    Article  Google Scholar 

  • Fossen H, Tikoff B (1993) The deformation matrix for simultaneous simple shearing, pure shearing and volume change, and its application to transpression-transtension tectonics. J Struct Geol 15:413–422

    Article  Google Scholar 

  • Galehouse JS, Lienkaemper J (2004) Inferences drawn from two decades of alinement array measurements of creep on faults in the San Francisco Bay Region. Bull Seismol Soc Am 93(6):2415–2433

    Article  Google Scholar 

  • Gratier JP, Richard J, Renard F, Mittempergher S, Doan ML, Di Toro G, Hadizadeh J, Boullier AM (2011) Aseismic sliding of active faults by pressure solution creep: evidence from the San Andreas Fault Observatory at Depth. Geology 39(12):1131–2113

    Article  Google Scholar 

  • Harris RA (2017) Large earthquakes and creeping faults. Rev Geophys 55:169–198

    Article  Google Scholar 

  • Heard HC (1963) The effect of large changes in strain rate in the experimental deformation of the Yule marble. J Geol 71:162–195

    Article  Google Scholar 

  • Hearn EH, McClusky S, Ergintav S, Reilinger RE (2009) Izmit earthquake postseismic deformation and dynamics of the North Anatolian Fault Zone. J Geophys Res 114:B08405. https://doi.org/10.1029/2008JB006026

    Article  Google Scholar 

  • Jackson J, McKenzie D (1988) The relationship between plate motions and seismic moment tensors, and the rates of active deformation in the Mediterranean and Middle East. Geophys J Int 93(1):45–73

    Article  Google Scholar 

  • Jackson J, Haines J, Holt W (1995) The accommodation of Arabia-Eurasia plate convergence in Iran. Geophys J Res 100:15 205-15 219

    Article  Google Scholar 

  • Jaeger JC, Cook NGW (1969) Fundamentals of rock mechanics. Blackwell Publishing Limited, Hoboken, p 608

    Google Scholar 

  • James GA, Wynd JG (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area. Am Assoc Pet Geol Bull 49:2182–2245

    Google Scholar 

  • Jones RR, Holdworth RE, Clegg P, Mcccaffrey K, Tavrnelli E (2004) Inclined transpression. J Struct Geol 26:1531–1548

    Article  Google Scholar 

  • Karasözen E, Nissen E, Bergman EA, Ghods A (2019) Seismotectonics of the Zagros (Iran) from Orogen-wide, calibrated earthquake relocations. J Geophys Res Solid Earth 124(8):9109–9129. https://doi.org/10.1029/2019JB017336

    Article  Google Scholar 

  • Laurent P, Kern H, Lacombe O (2000) Determination of deviatoric stress tensors based on an inversion of calcite twin data from experimentally deformed monophase samples. Part II. Axial and triaxial stress experiments. Tectonophysics 327(1):131–148

    Article  Google Scholar 

  • Law RD, Searle MP, Simpson RL (2004) Strain, deformation temperatures and vorticity of flow at the top of the greater Himalayan Slab, Everest Massif, Tibet. J Geol Soc Lond 161:305–320

    Article  Google Scholar 

  • Lienkaemper J, McFarland FS, Simpson R, Bilham R (2012) Long-term creep rates on the Hayward Fault: evidence for controls on the size and frequency of large earthquakes. Bull Seismol Soc Am 102(1):31–41. https://doi.org/10.1785/0120110033

    Article  Google Scholar 

  • Lohman R, Barnhart W (2010) Evaluation of earthquake triggering during the 2005–2008 earthquake sequence on Qeshm Island, Iran. J Geophys Res 115(B12):B12413. https://doi.org/10.1029/2010JB00710

    Article  Google Scholar 

  • Masson F, Ch’ery J, Hatzfeld D, Martinod J, Vernant P, Tavakoli F, Ghafory-Ashtiani M (2005) Seismic versus aseismic deformation in Iran inferred from earthquakes and geodetic data. Geophys J Int 160:217–226

    Article  Google Scholar 

  • McClusky S et al (2000) Global positioning system constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Geophys J Res 105:5695–5719

    Article  Google Scholar 

  • McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int 155:126–138

    Article  Google Scholar 

  • Nadim M (2015) Historical and social analysis of Shiraz earthquakes through Odes of Vesal Sons. Res Hist Med 4(1):25–34 (in Persian)

    Google Scholar 

  • Nemčok M, Lisle RJ (1995) A stress inversion procedure for polyphase fault/slip data sets. J Struct Geol 17(10):1445–1453. https://doi.org/10.1016/0191-8141(95)00040-K

    Article  Google Scholar 

  • Nemčok M, Kovac D, Lisle RJ (1999) A stress inversion procedure for polyphase calcite twin and fault slip data sets. J Struct Geol 21:597–611

    Article  Google Scholar 

  • Nissen E, Ghorashi M, Jackson J, Parsons B, Talebian M (2007) The 2005 Qeshm Island earthquake (Iran) a link between buried reverse faulting and surface folding in the Zagros Simply Folded Belt? Geophys J Int 171(1):326–338

    Article  Google Scholar 

  • Nissen E, Tatar M, Jackson JA, Allen MB (2011) New views on earthquake faulting in the Zagros fold-and-thrust belt of Iran. Geophys J Int. https://doi.org/10.1111/j.1365-246X.2011.05119.x

    Article  Google Scholar 

  • Passchier CW (1988) Analysis of deformation paths in shear zones. Geol Rundsch 77:309–318

    Article  Google Scholar 

  • Pfiffner OD (2017) Thick-skinned and thin-skinned tectonics: a global perspective. Geosciences 7(3):71. https://doi.org/10.3390/geosciences7030071

    Article  Google Scholar 

  • Pyle D (1993) D. Shelley 1992. Igneous and metamorphic rocks under the microscope. Classification, textures, microstructures and mineral preferred orientations. xvi + 445 pp. London, Glasgow, New York, Tokyo, Melbourne, Madras: Chapman & Hall. Price £24.95 (paperback). ISBN 0 412 44200 0. https://doi.org/10.1017/S0016756800020744

  • Ramberg H (1975) Particle paths, displacement and progressive strain applicable to rocks. Tectonophysics. https://doi.org/10.1016/0040-1951(75)90058-X

    Article  Google Scholar 

  • Ramsay JG (1980) The crack–seal mechanism of rock deformation. Nature 284:135–139

    Article  Google Scholar 

  • Ramsay JG, Huber MI (1984) The techniques of modern structural geology: strain analyses. Academic Press, Cambridge

    Google Scholar 

  • Roustaei ME, Nissen M, Abbassi A, Gholamzadeh M, Ghorashi M, Tatar F, Yamini-Fard E, Bergman JJ, Parsons B (2010) The 2006 March 25 Fin earthquakes (Iran)—insights into the vertical extents of faulting in the Zagros Simply Folded Belt. Geophys J Int 181(3):1275–1291

    Google Scholar 

  • Rowe KJ, Rutter EH (1990) Paleostress estimation using calcite twinning: experimental calibration and application to nature. J Struct Geol 12:1–17

    Article  Google Scholar 

  • Rutter EH, Holdsworth RE, Knipe RJ (2001) Nature and tectonic significance of fault zone weakening: an introduction. In: Holdsworth RE, Strachan RE, Magloughlin JF, Knipe RJ (eds) The nature and tectonic significance of fault zone weakening. Geological Society, London, Special Publications, vol 186, pp 1–11

  • Sarkarinejad K, Azizi A (2008) Slip partitioning and inclined dextral transpression along with the Zagros thrust system. J Struct Geol 30:116–136

    Article  Google Scholar 

  • Sarkarinejad K, Goftari F (2019) Thick-skinned and thin-skinned tectonics of the Zagros orogen, Iran: constraints from structural, microstructural and kinematics analyses. J Asian Earth Sci 170:249–273

    Article  Google Scholar 

  • Sarkarinejad K, Zafarmand B, Oveisi B (2017) Evolution of the stress fields in the Zagros foreland folded belt using focal mechanism and kinematic analyses: the case of the Fars salient, Iran. Int J Earth Sci Geol Rundch. https://doi.org/10.1007/s00531-017-1516-3

    Article  Google Scholar 

  • Schmid SM, Paterson MS, Boland JN (1980) High temperature flow and dynamic recrystallization in Carrara Marble. Tectonophysics 65:245–280

    Article  Google Scholar 

  • Sella GF, Dixon TH, Mao A (2002) REVEL: a model for recent plate velocities from space geodesy. Geophys J Res 107(B4):ETG 11-1-11-32

    Article  Google Scholar 

  • Shelley D (1989) “CALCSTRESS” A program that calculates compression and tension direction from calcite U-stage data. Comput Geosci 15:269–273

    Article  Google Scholar 

  • Sibson RH (1983) Continental fault structure and the shallow earthquake source. Geol Soc Lond 140:741–767

    Article  Google Scholar 

  • Smith JV, Durney DW (1992) Experimental formation of brittle structural assemblages in oblique divergence. Tectonophysics 216(3–4):235 (Aseismic slip of the active Sabz Gramerly3 References cheking.docx)

    Article  Google Scholar 

  • Spang JH (1972) Numerical method for dynamic analysis of calcite twin lamellae. Geol Soc Am Bull 83(2):467–472. https://doi.org/10.1130/0016-7606

    Article  Google Scholar 

  • Talbot CJ, Alavi M (1996) The Past of a Future Syntaxis across the Zagros. In: Alsop GI, Blundell DJ, Davison I (eds) Salt tectonics, vol 100. Geological Society, London, pp 89–109. https://doi.org/10.1144/gsl.sp.1996.100.01.08

    Chapter  Google Scholar 

  • Tatar M, Hatzfeld D, Ghafory-Ashtiany M (2004) Tectonics of the Central Zagros (Iran) deduced from microearthquake seismicity. Geophys J Int 156(2):255–266. https://doi.org/10.1111/j.1365-246X.2003.02145.x

    Article  Google Scholar 

  • Tavakoli F, Chéry J (2004) Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys J Int 157(1):381–398. https://doi.org/10.1111/j.1365-246X.2004.02222

    Article  Google Scholar 

  • Tavakoli F, Walpersdorf A, Authemayou C, Nankali HR, Hatzfeld D, Tatar M, Djamour Y, Nilforoushan F, Cotte N (2008) Distribution of the right-lateral strike–slip motion from the Main Recent Fault to the Kazerun Fault System (Zagros, Iran): evidence from present-day GPS velocities. Earth Planet Sci Lett. https://doi.org/10.1016/j.epsl.2008.08.030

    Article  Google Scholar 

  • Turner FJ, Weiss LE (1963) Structural analysis of metamorphic tectonites. McGraw-Hill, New York, p 545

    Google Scholar 

  • Twiss RJ, Moores EM (1992) Structural geology. W.H. Freeman and Company, New York, p 532

    Google Scholar 

  • Vernant Ph, Nilforoushan F, Hatzfeld D, Abbassi MR, Vigny C, Masson F, Nankali H, Martinod J, Ashtiani A, Bayer R, Tavakoli F (2004) Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys J Int 157(1):381–398

    Article  Google Scholar 

  • Walpersdorf A, Hatzfeld D, Nankali H, Tavakoli F, Nilforoushan F, Tatar M, Vernant P, Chéry J, Masson F (2006) Difference in the GPS deformation pattern of North and Central Zagros (Iran). Geophys J Int 167(3):1077–1088. https://doi.org/10.1111/j.1365-246X.2006.03147

    Article  Google Scholar 

  • Weijermars R (1991) The role of stress in ductile deformation. J Struct Geol 13:1061–1078

    Article  Google Scholar 

  • Wenk HR, Takeshita T, Bechler E, Erskine BG, Matthies S (1987) Pure shear and simple shear calcite textures. Comparison of experimental, theoretical and natural data. J Struct Geol 9(56):731–745. https://doi.org/10.1016/0191-8141(87)90156-8

    Article  Google Scholar 

  • Xypolias P (2010) Vorticity analysis in shear zones: a review of methods and applications. J Struct Geol 32(12):2072–2092

    Article  Google Scholar 

  • Žalohar J, Vrabec M (2010) Kinematics and dynamics of fault reactivation: the Crossett approach. J Struct Geol 32:15–27

    Article  Google Scholar 

  • Žalohar J, Vrebec M (2007) Paleostress analysis of heterogeneous fault-slip data: Gausss method. J Struct Geol 28:980–990

    Google Scholar 

  • Žalohar J, Vrebec M (2008) Combined paleostress and kinematic analysis fault-slip data: the multiple-slip method. J Struct Geol 30:1603–1613

    Article  Google Scholar 

  • Zare M, Kamranzad F, Parcharidis I, Tsironi V, Varvara Tsironi V (2017) Preliminary report of Mw7.3 Sarpol-e Zahab, Iran earthquake on November 12, 2017

Download references

Acknowledgements

The authors wish to thank Professor Wolf-Christian Dullo, Editor-in-Chief of the International Journal of Earth Sciences for his careful review and valuable suggestion on the manuscript. Thanks to anonymous reviewers that carefully reviewed the manuscript and made valuable suggestions and comments. Special thanks to Professor Jan Tullis, Brown University, USA, for critical reading/editing manuscript, which extensively improved the presentation. This research was supported by the Shiraz University Research Council (SURC) grant is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Sarkarinejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkarinejad, K., Mottahedi, M. & Nori, M. Aseismic slip on the active Sabz-Pushan and Sepidar thrusts, Iran: microstructural and kinematics evidence of the slickenline fibre creep. Int J Earth Sci (Geol Rundsch) 110, 2831–2848 (2021). https://doi.org/10.1007/s00531-021-02081-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-021-02081-1

Keywords

Navigation