Skip to main content
Log in

Salt kinematics and regional tectonics across a Permian gas field: a case study from East Frisia, NW Germany

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This study presents a reconstruction of the tectonic history of an Upper Rotliegend tight gas field in Northern Germany. Tectonism of the greater study area was influenced by multiple phases of salt movement, which produced a variety of salt-related structural features such as salt walls, salt diapirs as well as salt glaciers (namakiers). A sequential 2D retro-deformation and stratal backstripping methodology was used to differentiate mechanisms inducing salt movement and to discuss their relation to regional tectonics. The quantitative geometric restoration included sedimentary balancing, decompaction, fault-related deformation, salt movement, thermal subsidence, and isostasy to unravel the post-depositional tectonic overprint of the Rotliegend reservoir rock. The results of this study indicate that reactive salt diapirism started during an Early Triassic interval of thin-skinned extensional tectonics, followed by an active diapirism stage with an overburden salt piercement in the Late Triassic, and finally a period of intensive salt surface extrusion and the formation of salt glaciers (namakiers) in Late Triassic and Jurassic times. Since the Early Cretaceous, salt in the study area has been rising by passive diapirism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen PA, Allen JR (1990) Basin Analysis. Principles and Applications. Blackwell Scientific, Oxford, p 451

    Google Scholar 

  • Antrett P, Vackiner AA, Kukla PA, Klitzsch N, Stollhofen H (2012) Impact of arid surface megacracks on hydrocarbon reservoir properties. AAPG Bulletin 96(7):1279–1299

    Article  Google Scholar 

  • Baldschuhn R, Binot F, Fleig S, Kockel F (2001) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor—Strukturen, Strukturentwicklung, Paläogeographie. Geologisches Jahrbuch Reihe A Band A 153:88

    Google Scholar 

  • Bishop DJ, Buchanan PG, Bishop CJ (1995) Gravity-driven thin-skinned extension above Zechstein Group evaporites in the western central North Sea; an application of computer-aided section restoration techniques. Mar Pet Geol 12(2):115–135

    Article  Google Scholar 

  • Brandner R (1984) Meeresspiegelschwankungen und Tektonik in der Trias der NW Tethys. Jahrbuch für Geologie. A-B (Wien) 126:435–475

    Google Scholar 

  • Brückner-Röhling S, Röhling H-G (1998) Palaeotectonics in the lower and middle Triassic (Buntsandstein, Muschelkalk) of the North German Basin. Hallesches Jb Geowiss B, Beih 5:27–28

    Google Scholar 

  • Buchanan PG, Bishop DJ, Hood DN (1996) Development of salt-related structures in the central North Sea; results from section balancing. In: Alsop GI, Blundell DJ, Davison I (eds) Salt tectonics. Geological Society Special Publications 100:111–128

  • Clauer N, Zwingmann H, Chaudhuri S (1996) Isotopic (K-Ar and oxygen) constraints on the extent and importance of the Liassic hydrothermal activity in Western Europe. Clay Miner 31:301–318

    Article  Google Scholar 

  • Clauer N, Liewig N, Zwingmann H (2012) Time-constrained illitization in gas-bearing Rotliegende (Permian) sandstones from the northern Germany by illite potassium-argon dating. AAPG Bulletin 96(3):519–543

    Article  Google Scholar 

  • Dahlstrom CDA (1969) Balanced cross sections. Canadian Journal of Earth Sciences = Revue Canadienne des Sciences de la Terre 6(4, Part 1):743–757

    Google Scholar 

  • Duval BC, Cramez C, Jackson MPA (1992) Raft tectonics in the Kwanza Basin, Angola. In: Jackson MPA (ed) Special issue; salt tectonics. Marine and Petroleum Geology 9(4):389–404

  • Frisch U, Kockel F (1997) Altkimmerische Bewegungen in Nordwestdeutschland. Brandenburger Geowiss Beitr 4(1):19–29

    Google Scholar 

  • Gaupp R, Solms M (2005) Palaeo oil- and gasfields in the Rotliegend of the North German basin: effects upon hydrocarbon reservoir quality (Paläo-Öl- und Gasfelder im Rotliegenden des Norddeutschen Beckens: Wirkungen der KW-Migration auf die Speicherqualitäts-Entwicklung.). In: Gaupp R (ed) DGMK Research report 593: Tight gas reservoirs—natural gas for the future: DGMK Celle, p 242

  • Gaupp R, Matter A, Platt J, Ramsayer K, Walzebuck JP (1993) Diagenesis and fluid evolution in deeply buried Permian (Rotliegende) gas reservoirs, NW Germany. AAPG Bulletin 77(7):1111–1128

    Google Scholar 

  • Geluk MC (1999) Late Permian (Zechstein) rifting in the Netherlands: models and implications for petroleum geology. Petroleum Geosciences 5:189–199

    Article  Google Scholar 

  • Geluk MC (2000) Late Permian (Zechstein) carbonate-facies maps, the Netherlands. Geol Mijnbouw 79:17–27

    Google Scholar 

  • George GT, Berry JK (1993) A new palaeogeographic and depositional model for the Upper Rotliegend of the UK Sector of the Southern North Sea. In: North CP, Prosser DJ (eds) Characterization of Fluvial and Aeolian Reservoirs, vol 73. Special Publication, Geological Society London, pp 291–319

    Google Scholar 

  • Gibbs AD (1983) Balanced cross-section construction from seismic sections in areas of extensional tectonics. In: balanced cross-sections and their geological significance; a memorial to David Elliott. J Struct Geol 5(2):153–160

    Article  Google Scholar 

  • Glennie KW (1990) Introduction to the Petroleum Geology of the North Sea 3rd ed. Blackwell Scientific, Oxford

    Google Scholar 

  • Hossack JR, McGuinness DP (1990) Balanced sections and the development of fault and salt structures in the Gulf of Mexico (GOM). In: Geological Society of America, 1990 annual meeting. Abstracts with Programs—Geological Society of America 22(7):48

  • Hudec MR, Jackson MPA (2007) Terra infirma: understanding salt tectonics. Earth Sci Rev 82:1–28

    Article  Google Scholar 

  • Jackson MPA, Talbot CJ (1986) External shapes, strain rates & dynamics of salt structures. Geol Soc Am Bull 97:305–328

    Article  Google Scholar 

  • Jackson MPA, Vendeville BC, Schultz-Ela DD (1994) Structural dynamics of salt systems. Annu Rev Earth Planet Sci 22:93–117

    Article  Google Scholar 

  • Jublitz K-B, Znosko J, Franke D (1985) Lithologic-palaeogeographic map. Middle Bunter, 1:1.500.000. International geologic correlation programme Project No. 86. Southwest border of the East-European Platform. Zentrales Geologisches Institut, Berlin, G.D.R

  • Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence not Alpine collision. Geology 36(11):839–842

    Article  Google Scholar 

  • Koyi H, Talbot CJ, Torudbakken BO (1993) Salt diapirs of the Southwest Nordkapp Basin; analogue modelling. In: new insights into salt tectonics; collection of invited papers reflecting the recent developments in the field of salt tectonics. Tectonophysics 228(3–4):167–187

    Article  Google Scholar 

  • Kukla PA, Urai JL, Mohr M (2008) Dynamics of salt structures. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins; the Central European Basin system. Springer, Berlin, Federal Republic of Germany, pp 291–306

    Google Scholar 

  • Lee M, Aronson JL, Savin SM (1985) K/Ar dating of time and gas emplacement in Rotliegendes sandstone, Netherlands. AAPG Bulletin 69:1381–1385

    Google Scholar 

  • Legler B (2006) Die Entwicklung des Südlichen Permbeckens in Abhängigkeit von Tektonik, eustatischen Meeresspiegelschwankungen des Proto-Atlantiks und Klimavariabilität (Ober-Rotliegend, NW Europa). Schriftenreihe Dt Ges Geowiss 47:103

  • Legler B, Gebhardt U, Schneider JW (2005) Late Permian non-marine–marine transitional profiles in the central Southern Permian Basin. Int J Earth Sciences 94:851–862

    Article  Google Scholar 

  • Lohr T, Krawczyk M, Tanner DC, Samiee R, Endres H, Oncken O, Trappe H, Kukla PA (2007) Strain partitioning due to salt; insights from interpretation of a 3D seismic data set in the NW German Basin. Basin Res 19(4):579–597

    Article  Google Scholar 

  • Lokhorst A (ed, 1998). The Northwest European Gas Atlas—composition and isotope ratios of natural gases. Netherlands Institute of Applied Geoscience TNO, Haarlem, ISBN 90-72869-60-5

  • Mauko G, Mukerji T, Dvorkia J (1996) Rock Physics Handbook. Stanford University, Stanford Physics Laboratory, pp 241–244

    Google Scholar 

  • Maystrenko YP, Bayer U, Scheck-Wenderoth M (2012) Salt as a 3D element in structural modeling—Example from the Central European Basin System. Tectonophysics. doi:10.1016/j.tecto.2012.06.030

  • Menning M, Hendrich A (2002) Stratigraphische Tabelle von Deutschland 2002. Potsdam, Frankfurt a.M. ISBN 3-00-010197-7

  • Mohr M, Kukla P, Urai J, Bresser G (2005) Multiphase salt tectonic evolution in NW Germany: seismic interpretation and retro-deformation. Int J Earth Sci 94:917–940

    Article  Google Scholar 

  • Mohr M, Warren JK, Kukla PA, Urai JL, Irmen A (2007) Subsurface seismic record of salt glaciers in an extensional intracontinental setting (Late Triassic of northwestern Germany). Geology 35:963–966

    Article  Google Scholar 

  • Nalpas T, Brun JP (1993) Salt flow and diapirism related to extension at crustal scale. Tectonophysics 228(3–4):349–362

    Article  Google Scholar 

  • Paul J, Franke W (1977) Sedimentologie einer Transgression: Die Röt/Muschelkalk-Grenze bei Göttingen. N. Jb. Geol. Paläont., Mh. 1977(3):148–177

  • Paul J, Wemmer K, Ahrendt H (2008) Provenance of siliciclastic sediments (Permian to Jurassic) in the Central European Basin. Zeitschrift der Deutschen Gesellschaft fuer Geowissenschaften 159(4):641–650

    Article  Google Scholar 

  • Peryt TM, Wagner R (1998) Zechstein evaporite deposition in the Central European Basin: cycles and stratigraphic sequences. J Seismic Explor 7(3–4):201–218

    Google Scholar 

  • Podladchikov Y, Talbot C, Poliakov ANB (1993) Numerical models of complex diapirs. Tectonophysics 228(3–4):189–198

    Article  Google Scholar 

  • Poliakov ANB, Podladchikov Y, Talbot C (1993) Initiation of salt diapirs with frictional overburdens; numerical experiments. Tectonophysics 228(3–4):199–210

    Google Scholar 

  • Roberts AM, Lundin ER, Kusznir NJ (1997) Subsidence of the Vøring Basin and the influence of the Atlantic continental margin. J Geol Soc London 154:551–557

    Article  Google Scholar 

  • Roberts AM, Kusznir NJ, Yielding G, Styles P (1998) 2D flexural backstripping of extensional basins; the need for a sideways glance. Petroleum Geoscience 4:327–338

    Article  Google Scholar 

  • Rowan MG (1993) A systematic technique for the sequential restoration of salt structures. In: new insights into salt tectonics; collection of invited papers reflecting the recent developments in the field of salt tectonics, Cobbold. Tectonophysics 228(3–4):331–348

    Article  Google Scholar 

  • Scheck M, Bayer U, Lewerenz B (2003) Salt redistribution during extension and inversion inferred from 3D backstripping. Tectonophysics 373:55–73

    Article  Google Scholar 

  • Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System—new insights from a 3D structural model. Tectonophysics 397:143–165

    Article  Google Scholar 

  • Schléder Z, Urai JL (2007) Deformation and recrystallization mechanisms in mylonitic shear zones in naturally deformed extrusive Eocene-Oligocene rocksalt from Eyvanekey plateau and Garmsar hills (central Iran). J Struct Geol 32(4):580–594

    Google Scholar 

  • Schmoker JW, Halley RB (1982) Carbonate porosity versus depth; a predictable relation for South Florida. AAPG Bulletin 66:2561–2570

    Google Scholar 

  • Schröder B (1982) Entwicklung des Sedimentbeckens und Stratigraphie der klassischen germanischen Trias. Geol Rundsch 71(3):783–794

    Article  Google Scholar 

  • Schultz-Ela DD, Jackson MPA, Vendeville BC (1993) Mechanics of active salt diapirism. Tectonophysics 228(3–4):275–312

    Article  Google Scholar 

  • Schwarz H-U (1975) Sedimentary structures and facies analysis of shallow marine carbonates (Lower Muschelkalk, Middle Triassic, southwestern Germany). Contributions to Sedimentology, Stuttgart 3:1–100

    Google Scholar 

  • Sclater JG, Christie PAF (1980) Continental stretching; explanation of post-Mid-Cretaceous subsidence of central North Sea basin. AAPG Bulletin 64(5):781–782

    Google Scholar 

  • Scotese C. (2008) PALAEOMAP PROJECT. Earth History (palaeogeographic maps) Department of Geology, University of Texas, Arlington. (www.scotese.com)

  • Senkowiczowa H (1976) The Trias—The Polish lowlands. In: Geology of Poland 1: Stratigraphy, Part 2.: 79–94. Publication House Wydawnictwa Geol., Warsaw

  • Stollhofen H, Bachman GH, Barnasch J, Bayer U, Beutler G, Franz M, Kästner M, Legler B, Mutterlose J, Radies D (2008) Upper Rotliegend to Early Cretaceous basin development. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins. The Central European Basin System: 181–210

  • Strömbäck AC, Howell JA (2002) Predicting distribution of remobilized aeolian facies using sub-surface data: the Weissliegend of the UK Southern North Sea. Petroleum Geoscience 8:237–249

    Article  Google Scholar 

  • Szulc J (2000) Middle Triassic evolution of the northern Peri-Tethys area as influenced by early opening of the Tethys Ocean. Ann Soc Geol Pol 70:1–48

    Google Scholar 

  • Urai JL, Spiers CJ, Zwart HJ, Lister GS (1986) Weakening of rocksalt by water during long term creep. Nature 324:554–557

    Article  Google Scholar 

  • Vackiner AA, Antrett P, Stollhofen H, Back S, Kukla PA, Bärle C (2011) Syndepositional tectonic controls and palaeo-topography of a permian tight gas reservoir in NW Germany. J Pet Geol 34(4):411–428

    Article  Google Scholar 

  • van Keken PE, Spiers CJ, van den Berg AP, Muyzert EJ (1993) The effective viscosity of rocksalt; implementation of steady-state creep laws in numerical models of salt diapirism. Tectonophysics 225(4):457–476

    Article  Google Scholar 

  • Vendeville BC, Jackson MPA (1992) The rise of diapirs during thin-skinned extension. In: Jackson MPA (ed) Special issue; salt tectonics. Marine and Petroleum Geology 9(4):331–353

  • Vendeville BC, Ge H, Jackson MPA (1995) Scale models of salt tectonics during basement-involved extension. Petroleum Geoscience 1:179–183

    Article  Google Scholar 

  • Walsh P, Schultz-Ela DD (2003) Mechanics of graben evolution in Canyonlands National Park, Utah. GSA Bulletin 115(3):259–270

    Article  Google Scholar 

  • Warren JK (2006) Evaporites: Sediments. Springer, Resources and Hydrocarbons, 1036 pp

    Book  Google Scholar 

  • Warren JK (2008) Salt as sediment in the Central European Basin system as seen from a deep time perspective. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins; the Central European Basin system. Springer, Berlin, Federal Republic of Germany, pp 249–276

    Google Scholar 

  • Watts AB (2001) Isostasy and Flexure of the Lithosphere. Cambridge University Press, Cambridge 458 pp

    Google Scholar 

  • Wurster P (1968) Paläogeographie der deutschen Trias und die paläogeographische Orientierung der Lettenkohle in Südwestdeutschland. Eclog geol Helv 61:157–166

    Google Scholar 

  • Ziegler PA (1982) Geological Atlas of Western and Central Europe. Shell Internat Petrol Maatsch, The Hague

    Google Scholar 

  • Ziegler PA (1988) Evolution of the Arctic-North Atlantic and the Western thetys. AAPG Memoir 43: 198 p and 30 plates

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe. Shell, 2nd ed. The Hague

  • Ziegler PA (1995) Geodynamics of compressional intra-plate deformations: a comparison with the Alpine Foreland. Nova Acta Leopold., NF 71(291):265–300

    Google Scholar 

Download references

Acknowledgments

The study is part of the Wintershall and RWTH Aachen University Tight Gas Initiative. We thank Wintershall Holding GmbH and GDF Suez E&P Deutschland GmbH for providing the data and supporting this project. Thanks also to the IJES editorial staff, in particular chief editors Wolf-Christian Dullo and Jürgen Grötsch and the referees Reinhard Gaupp and Jos Okkerman for their constructive comments which greatly improved the manuscript. We are grateful to Schlumberger Ltd. and Midland Valley Ltd. for providing academic Petrel and Move licenses for the use at RWTH Aachen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Alexandra Vackiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vackiner, A.A., Antrett, P., Strozyk, F. et al. Salt kinematics and regional tectonics across a Permian gas field: a case study from East Frisia, NW Germany. Int J Earth Sci (Geol Rundsch) 102, 1701–1716 (2013). https://doi.org/10.1007/s00531-013-0887-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0887-3

Keywords

Navigation