Skip to main content
Log in

Precambrian crystalline basement in southern Mongolia as revealed by SHRIMP zircon dating

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Single zircon ages determined by ion microprobe (SHRIMP II) for granitoid gneisses from the southern slope of the Baga Bogd massif (Gobi-Altai, southern Mongolia) reveal several episodes of zircon growth, ranging from late Palaeoproterozoic to late Cambrian. The oldest events are documented by a zircon crystallization age for a gneiss protolith at 1519 ± 11 Ma and by a xenocrystic zircon from a dark grey augen-gneiss yielding an age of c. 1701 Ma. Discrete igneous events are recorded in granite-gneisses with protolith emplacement ages of 983 ± 6, 956 ± 3 and 954 ± 8 Ma. These ages provide the first record of early Neoproterozoic magmatic activity in this region. A much younger and discrete magmatic event is recorded by several dioritic to granitic orthogneisses which are tectonically interlayered with the older gneisses and have protolith emplacement ages between 502 and 498 Ma. These late Cambrian granitoids of calc-alkaline affinity are likely to have been emplaced along an active continental margin and suggest that the Baga Bogd Precambrian crustal fragment was either docked against the southward (present-day coordinates) growing margin of the CAOB or was a large enough crustal entity to develop an arc along its margin. We speculate that the Precambrian gneisses of this massif may be part of a crustal fragment rifted off the Tarim Craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Badarch G, Cunningham WD, Windley BF (2002) A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. J Asian Earth Sci 21:87–110

    Article  Google Scholar 

  • Bayasgalan A, Jackson J, Ritz JF, Carretier S (1999) ‘Forebergs’, flowers structures, and the development of large intra-continental strike-slip fault: the Gurvan Bogd fault system in Mongolia. J Struct Geol 21:1285–1302

    Article  Google Scholar 

  • Berzin NA, Coleman RG, Dobretsov NL, Zonenshain LP, Xuchang X, Chang EZ (1994) Geodynamic map of the western part of the Paleoasian ocean. Russ Geol Geophys 35:5–22

    Google Scholar 

  • Buchan C, Cunningham D, Windley BF, Tomurhuu D (2001) Structural and lithological characteristics of the Bayankhongor Ophiolite Zone, Central Mongolia. J Geol Soc London 158:445–460

    Article  Google Scholar 

  • Buchan C, Pfänder J, Kröner A, Brewer TS, Tomurtogoo O, Tomurhuu D, Cunningham D, Windley BF (2002) Timing of accretion and collisional deformation in the Central Asian Orogenic Belt: implications of granite geochronology in the Bayankhongor Ophiolite Zone. Chem Geol 192:23–45

    Article  Google Scholar 

  • Buslov MM, Saphonova IYu, Watanabe T, Obut OT, Fujiwara Y, Iwata K, Semakov NN, Sugai Y, Smirnova LV, Kazansky AY (2001) Evolution of the Paleo-Asian Ocean (Altai–Sayan Region, Central Asia) and collision of possible Gondwana-derived terranes with the southern marginal part of the Siberian continent. Geos J 5:203–224

    Article  Google Scholar 

  • Claoué-Long JC, Compston W, Roberts J, Fanning CM (1995) Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and 40Ar/39Ar analysis. In: Bergen WA, Kent DV, Aubrey MP, Hardenbol J (eds) Geochronology time scales and global stratigraphic correlation. SEPM Special Publication 54:3–20

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. In: Hanchar JM, Hoskin PWO (eds) Zircon. Reviews in mineralogy & geochemistry 53:469–500. Mineralogical Society of America, Washington

  • Cowgill E, Yin A, Harrison TM, Wang XF (2003) Reconstruction of the Altyn Tagh fault based on U–Pb geochronology: role of back thrusts, mantle sutures, and heterogeneous crustal strength in forming the Tibetan Plateau. J Geophys Res 108(B7):2346

    Article  Google Scholar 

  • Cunningham D (2005) Active intracontinental transpressional mountain building in the Mongolian Altai: defining a new class of orogen. Earth Planet Sci Lett 240:436–444

    Article  Google Scholar 

  • De Laeter JR, Kennedy AK (1998) A double focusing mass spectrometer for geochronology. Int J Mass Spec 178:43–50

    Article  Google Scholar 

  • Didenko AN, Mossakovsky AA, Pechersky DM, Ruzhenstev SV, Samygin SG, Kheraskova TN (1994) Geodynamics of the Central-Asian Paleozoic oceans. Russ Geol Geophys 35:59–75

    Google Scholar 

  • Dijkstra AH, Brouwer FM, Cunningham WD, Buchan C, Badarch G, Mason PRD (2006) Late Neoproterozoic proto-arc ocean crust in the Dariv Range, western Mongolia: a supra-subduction zone end-member ophiolite. J Geol Soc London 163:363–373

    Article  Google Scholar 

  • Dobretsov NL, Buslov MM (2007) Late Cambrian-Ordovician tectonics and geodynamics of Central Asia. Russ Geol Geophys 48:1–2

    Article  Google Scholar 

  • Dobretsov NL, Buslov MM, Vernikovsky VA (2003) Neoproterozoic to early Ordovician evolution of the Paleo-Asian ocean: Implications to the break-up of Rodinia. Gond Res 6:143–159

    Article  Google Scholar 

  • Filippova IB, Bush VA, Didenko AN (2001) Middle Paleozoic subduction belts: the leading factor in the formation of the Central Asian fold-and-thrust belt. Russ J Earth Sci 3:405–426

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Gehrels GE, Yin A, Wang XF (2003) Magmatic history of the northeastern Tibetan Plateau. J Geophys Res 108(B9):2423

    Article  Google Scholar 

  • Gladkochub D, Pisarevsky S, Donskaya T, Natapov L, Mazukabzov A, Stanevich A, Sklyarov E (2006) The Siberian Craton and its evolution in terms of the Rodinia hypothesis. Episodes 26:169–174

    Google Scholar 

  • Hargrove US, Stern RJ, Kimura JI, Manton WI, Johnson P (2006) How juvenile is the Arabian-Nubian Shield? Evidence from Nd isotopes and pre-Neoproterozoic inherited zircons. Earth Planet Sci Lett 252:308–326

    Article  Google Scholar 

  • Helo C, Hegner E, Kröner A, Badarch G, Tomurtogoo O, Windley BF, Dulski P (2006) Geochemical signature of Paleozoic accretionary complexes of the Central Asian Orogenic Belt in South Mongolia: Constraints on arc environments and crustal growth. Chem Geol 227:236–257

    Article  Google Scholar 

  • Irvine TN, Baragar WR (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Google Scholar 

  • Jahn BM, Wu F, Chen B (2000) Massive granitoid generation in Central Asia; Nd isotope evidence and implication for continental growth in the Phanerozoic. Episodes 23:82–92

    Google Scholar 

  • Khain EV, Bibikova EV, Salnikova EE, Kröner A, Gibsher AS, Didenko AN, Degtyarev KE, Fedotova AA (2003) The Palaeo-Asian ocean in the Neoproterozoic and early Palaeozoic: new geochronologic data and palaeotectonic reconstructions. Precamb Res 122:329–358

    Article  Google Scholar 

  • Kheraskova TN, Didenko AN, Bush VA, Volozh YA (2003) The Vendian-Early Paleozoic history of the continental margin of eastern Paleogondwana, Paleoasian Ocean, and Central Asian Foldbelt. Russ J Earth Sci 5:165–184

    Article  Google Scholar 

  • Kotov AB, Kozakov IK, Bibikova EV, Salnikova EB, Kirnozova TI, Kovach VP (1995) Duration of regional metamorphic episodes in areas of polycyclic endogenic processes: a U–Pb geochronological study. Petrology 3:567–575

    Google Scholar 

  • Kovach VP, Jian P, Yarmolyuk VV, Kozakov IK, Kovalenko VI, Liu DY, Terent’eva LB (2005) Magmatism and geodynamics of early stages of the Paleoasian ocean formation: geochronological and geochemical data on ophiolites of the Bayan-Khongor zone. Doklady Earth Sci 404:1072–1077

    Google Scholar 

  • Kovalenko VI, Yarmolyuk VV, Kovach VP, Kotov AB, Kozakov IK, Salnikova EB, Larin AM (2004) Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence. J Asian Earth Sci 23:605–627

    Article  Google Scholar 

  • Kozakov IK, Kotov AB, Kovach VP, Salnikova EB (1997) Crustal growth in the geologic evolution of the Baidarik Block, Central Mongolia: evidence from Sm–Nd isotopic systematics. Petrology 5:201–207

    Google Scholar 

  • Kozakov IK, Kotov AB, Salnikova EB, Bibikova EV, Kovach VP, Kirnozova TI, Berezhnaya NG, Lykhin DA (1999) Metamorphic age of crystalline complexes of the Tuva-Mongolia Massif: The U–Pb geochronology of granitoids. Petrology 7:177–191

    Google Scholar 

  • Kozakov IK, Salnikova EB, Khain EV, Kovach VP, Berezhnaya NG, Yakovleva NG, Plotkina YV (2002) Early Caledonian crystalline rocks of the Lake zone, Mongolia: Stages and tectonic environments as deduced from U–Pb and Sm–Nd isotopic data. Geotectonics 36:156–166

    Google Scholar 

  • Kozakov IK, Salnikova EB, Natman A, Kovach VP, Kotov AB, Podkovyrov VN, Plotkina YuV (2005) Metasedimentary complexes of the Tuva-Mongolian Massif: Age, provenances, and tectonic position. Strat Geol Corr 13:1–20

    Google Scholar 

  • Kozakov IK, Salnikova EB, Yakovleva SZ, Plotkina YuV, Fedoseenko AM (2006) Vendian metamorphism in the accretionary-collisional structure of Central Asia. Doklady Earth Sci 407:192–197

    Article  Google Scholar 

  • Kozakov IK, Salnikova EB, Wang T, Didenko AN, Plotkina YuV, Podkovyrov VN (2007) Early Precambrian crystalline complexes of the Central Asian microcontinent: Age, sources, tectonic position. Strat Geol Corr 15:121–140

    Article  Google Scholar 

  • Kröner A, Tomurtogoo O, Badarch G, Windley BF, Kozakov IK (2001) New zircon ages and significance for crustal evolution in Mongolia. In: Sklyarov EV (ed) Assembly and break up of Rodinia supercontinent, Irkutsk, 142–145

  • Kröner A, Windley BF, Badarch G, Tomurtogoo O, Hegner E, Jahn BM, Gruschka S, Khain EV, Demoux A, Wingate MTD (2007) Accretionary growth and crust formation in the Central Asian Orogenic Belt and comparison with the Arabian-Nubian-Shield. Geol Soc Am Mem 200:181–209

    Google Scholar 

  • Kuzmichev A, Bibikova EV, Zhuravlev DZ (2001) Neoproterozoic (∼ 800 Ma) orogeny in the Tuva-Mongolia Massif (Siberia): island arc-continent collision at the northeast Rodinia margin. Precamb Res 110:109–126

    Article  Google Scholar 

  • Larionov AN, Andreichev VA, Gee DG (2004) The Vendian alkaline igneous suite of northern Timan: ion microprobe U–Pb zircon ages of gabbros and syenite. In: Gee DG, Pease VL (eds) The neoproterozoic timanide orogen of eastern Baltica. Geol Soc London Mem 30:69–74

  • Lu S, Li H, Zhang Ch, Niu G (2008) Geological and geochronological evidence for the Precambrian evolution of the Tarim craton and surrounding continental fragments. Precamb Res 160:94–107

    Article  Google Scholar 

  • Ludwig KR (2003) User’s Manual for ISOPLOT/Ex 3.0. A geochronological toolkit for microsoft excel. Berkeley Geochronology Center Special Publication 4, pp 70

  • Mitrofanov FP, Kozakov IK, Palei IP (1981) Precambrian of western Mongolia and southern Tuva. Nauka Publishing House, Leningrad (in Russian)

  • Mitrofanov FP, Bibikova EV, Gracheva T, Kozakov IK, Sumin LV, Shuleshko IK (1985) Archean isotopic age of grey tonalitic gneisses in Celedonian structures of central Mongolia. Doklady Acad Nauk USSR 284:670–675

    Google Scholar 

  • Mossakovsky AA, Ruzhentsev SV, Samygin SG, Kheraskova TN (1993) Central Asian fold belt: geodynamic evolution and history of formation. Geotectonics 6:3–33

    Google Scholar 

  • Nelson DR (1997) Compilation of SHRIMP U–Pb zircon geochronology data. 1996. Geological Survey of Western Australia Record 1997/2, pp 189

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Pfänder JA, Kröner A (2004) Tectono-magmatic evolution, age and emplacement of the Agardagh Tes-Chem ophiolite in Tuva, Central Asia: Crustal growth by island arc accretion. In: Kusky T (ed) Precambrian ophiolites and related rocks. Elsevier Science, Amsterdam, pp 207–221

    Chapter  Google Scholar 

  • Pisarevsky SA, Natapov LM (2003) Siberia and Rodinia. Tectonophysics 375:221–245

    Article  Google Scholar 

  • Pisarevsky SA, Natapov LM, Donskaya TV, Gladkochub DP, Vernikovsky VA (2008) Proterozoic Siberia: a promontory of Rodinia. Precamb Res 160:66–76

    Article  Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Salnikova EB, Kozakov IK, Kotov AB, Kröner A, Todt W, Bibikova EV, Nutman A, Yakopvleva SZ, Kovach VP (2001) Age of Paleozoic granites and metamorphism in the Tuvino-Mongolian Massif of the Central Asian mobile belt: Loss of a Precambrian microcontinent. Precamb Res 110:143–164

    Article  Google Scholar 

  • Sengör AMC, Natal’in BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364:299–307

    Article  Google Scholar 

  • Shand SJ (1951) Eruptive rocks. 4th edition New York John Wiley, pp 488

  • Smelov AP, Timofeev AF (2007) The age of the North Asian Cratonic basement: an overview. Gond Res 12:279–288

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in Ocean Basins. J Geol Soc London Special Publications 42:313–345

  • Tapponnier P, Molnar P (1979) Active faulting and Cenozoic tectonics of the Tien Shan, Mongolia, and Baykal regions. J Geophys Res 84:3425–3459

    Article  Google Scholar 

  • Vassallo R, Jolivet M, Ritz JF, Braucher R, Larroque C, Sue C, Todbileg M, Javkhlanbold D (2007) Uplift age and rates of the Gurvan Bogd system (Gobi-Altay) by apatite fission track analysis. Earth Planet Sci Lett 259:333–346

    Article  Google Scholar 

  • Vernikovsky VA, Vernikovskaya AE, Wingate MTD, Popov NV, Kovach VP (2007) The 880–864 Ma granites of the Yenisey Ridge, western Siberian margin: Geochemistry, SHRIMP geochronology, and tectonic implications. Precamb Res 154:175–191

    Article  Google Scholar 

  • Wang T, Zheng Y, Gehrels GE, Mu Z (2001) Geochronological evidence for existence of South Mongolian microcontinent; a zircon U–Pb age of granitoid gneisses from the Yagan-Onch Hayrhan metamorphic core complex on the Sino-Mongolian border. Chin Sci Bull 46:2005–2008

    Article  Google Scholar 

  • Williams IS (1998) U–Th–Pb Geochronology by ion microprobe. In: Applications in micro-analytical techniques to understanding mineralizing processes. Rev Econ Geol 7:1–35

    Google Scholar 

  • Windley BF, Alexeiev D, Xiao WJ, Kröner A, Badarch G (2007) Tectonic models for accretion of the Central Asian Orogenic Belt. J Geol Soc London 164:31–47

    Article  Google Scholar 

  • Yarmolyuk VV, Kovalenko VI, Salnikova EB, Kozakov IK, Kotov AB, Kovach VP, Vladykin NV, Yakovleva SZ (2005) U–Pb age of syn- and post-metamorphic granitoids of south Mongolia: evidence for the presence of Grenvillides in the Central Asian Foldbelt. Doklady Earth Sci 404:986–990

    Google Scholar 

  • Yarmolyuk VV, Kovalenko VI, Kovach VP, Rytsk EY, Kozakov IK, Kotov AB, Salnikova EB (2006) EEarly Stages of the Paleoasian Ocean formation: results of geochronological, isotopic, and geochemical investigations of late Riphean and Vendian-Cambrian complexes in the Central Asian Foldbelt. Doklady Earth Sci 411:1184–1189

    Article  Google Scholar 

  • Zabotkin LB (1988) Geological Map L47-XXX, 1:200,000. Open file report 4276, Geological Funds of Mongolia, Ulaanbaatar, Mongolia (In Russian)

  • Zhao Y, Song B, Zhang SH (2006) The Central Mongolian microcontinent: Its Yangtze affinity and tectonic implications. In: Jahn BM, Chung L (eds) Abst.-vol., Symposium on continental growth and orogeny in Asia Taipei Taiwan March 19–26, pp 135–136

Download references

Acknowledgments

This paper is part of a collaborative study with the Institute of Geology and Mineral Resources, Mongolian Academy of Sciences, and funded by the Volkswagen Foundation under grant I/76399 to A.K. A.D. and laboratory work in Mainz was supported by the German Research Foundation (DFG) through grant GK392 “Composition and Evolution of Crust and Mantle”. We are grateful to the staff of the Beijing SHRIMP Center, in particular Jian Ping, for assistance during zircon analyses. We thank the reviewers Karel Schulmann and Peter A. Cawood for suggesting improvements to the manuscript. This is a contribution to IGCP Project 480 and publication no. 388 of the Mainz Geocycles Cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Demoux.

Additional information

G. Badarch deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demoux, A., Kröner, A., Liu, D. et al. Precambrian crystalline basement in southern Mongolia as revealed by SHRIMP zircon dating. Int J Earth Sci (Geol Rundsch) 98, 1365–1380 (2009). https://doi.org/10.1007/s00531-008-0321-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0321-4

Keywords

Navigation