Skip to main content

Advertisement

Log in

Existence and non-existence of solutions to elliptic equations related to the Caffarelli–Kohn–Nirenberg inequalities

  • Original Article
  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We investigate elliptic equations related to the Caffarelli–Kohn–Nirenberg inequalities: \({-div(|x|^\alpha |\nabla u|^{p-2}\nabla u)=|x|^\beta u^{p(\alpha,\beta)-1}, u(x) > 0,\,x\in\Omega\subset\mathbb{R}^N} (N\geq 3), 1<p<N\) and \({\alpha, \beta\in \mathbb{R}}\) such that \({\frac{p(N+\beta)}{N-p+\alpha} > p}\) . For various parameters α, β and various domains Ω, we establish some existence and non-existence results of solutions in rather general, possibly degenerate or singular settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Garcia Azorero J.P. and Peral Alonso I. (1998). Hardy inequalities and some critical elliptic and parabolic problems. J. Diff. Equ. 144: 441–476

    Article  MATH  MathSciNet  Google Scholar 

  2. Abdellaoui B. and Peral I. (2003). On quasilinear elliptic equations related to some Caffarelli–Kohn– Nirenberg inequalities. Commun. Pure Appl. Anal. 2: 539–566

    MATH  MathSciNet  Google Scholar 

  3. Abdellaoui B., Colorado E. and Peral I. (2004). Some remarks on elliptic equations with singular potentials and mixed boundary conditions. Adv. Nonlinear Stud. 4: 503–533

    MATH  MathSciNet  Google Scholar 

  4. Abdellaoui B., Colorado E. and Peral I. (2006). Effect of the boundary conditions in the behavior of the optimal constant of some Caffarelli–Kohn–Nirenberg inequalities, Application to some doubly critical nonlinear elliptic problems. Adv. Diff. Equ. 11: 667–720

    MathSciNet  MATH  Google Scholar 

  5. Almgren F. and Lieb E. (1989). Symmetric decreasing rearrangement is sometimes continuous. J. Amer. Math. Soc. 2: 683–773

    Article  MATH  MathSciNet  Google Scholar 

  6. Badiale M. and Tarantello G. (2002). A Sobolev–Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics. Arch. Ration. Mech. Anal. 163: 259–293

    Article  MATH  MathSciNet  Google Scholar 

  7. Caffarelli L., Kohn R. and Nirenberg L. (1989). First order interpolation inequalities with weighes. Composit. Math. 53: 259–275

    MathSciNet  Google Scholar 

  8. Caldiroli P. and Musina R. (1999). On the existence of extremal functions for weighted Sobolev embedding with critical exponent. Calc. Var. 8: 365–387

    Article  MATH  MathSciNet  Google Scholar 

  9. Caldiroli P. and Musina R. (2002). Singular elliptic problems with critical growth. Comm. Partial Diff. Equ. 27: 847–876

    Article  MATH  Google Scholar 

  10. Cao D., He X. and Peng S. (2005). Positive solutions for some singular critical growth nonlinear elliptic equations. Nonlinear Anal. 60: 589–609

    Article  MATH  MathSciNet  Google Scholar 

  11. Cao D. and Han P. (2004). Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Diff. Equ. 205: 521–537

    Article  MATH  MathSciNet  Google Scholar 

  12. Cao D. and Peng S. (2003). The asymptotic behaviour of the ground state solutions for Hénon equation. J. Math. Anal. Appl. 278: 1–17

    Article  MATH  MathSciNet  Google Scholar 

  13. Cao D. and Peng S. (2003). A global compactness result for singular elliptic problems involving critical Sobolev exponent. Proc. Am. Math. Soc. 131: 1857–1866

    Article  MATH  MathSciNet  Google Scholar 

  14. Cao D. and Peng S. (2003). A note on the sign-changing solutions to elliptic problems wiyh critical Sobolev exponent and Hardy terms. J. Diff. Equ. 193: 424–434

    Article  MATH  MathSciNet  Google Scholar 

  15. Catrina F. and Wang Z.Q. (2001). On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence(and nonexistence) and symmetry of extermal functions. Comm. Pure Appl. Math. 54: 229–258

    Article  MATH  MathSciNet  Google Scholar 

  16. Chou K. and Chu C. (1993). On the best constant for a weighted Sobolev–Hardy inequality, J. Lond. Math. Soc. 48: 137–151

    Article  MATH  MathSciNet  Google Scholar 

  17. Colorado E. and Peral I. (2004). Eigenvalues and bifurcation for elliptic equations with mixed Dirichlet–Neumann boundary conditions related to Caffarelli–Kohn–Nirenberg inequalities. Topol. Methods Nonlinear Anal. 23: 239–273

    MATH  MathSciNet  Google Scholar 

  18. Dautray, R., Lions, J.L.: Mathematical analysis and numerical methods for science and technology, vol. 1, physical origins and classical methods. Springer, Berlin (1990)

  19. Damascelli L. (1998). Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and mononicity results, Ann. Inst. H. Poincaré, Anal. non lin. 15(4): 493–516

    Article  MATH  MathSciNet  Google Scholar 

  20. Dupaigen L. (2002). A nonlinear elliptic PDE with the inverse potential. J. d’analyse Math. 86: 359–398

    Article  Google Scholar 

  21. Egnell H. (1989). Elliptic boundary value problems with singular coefficients and critical nonlinearities. Ind. Univ. Math. J. 2: 235–251

    Article  MathSciNet  Google Scholar 

  22. Egnell H. (1992). Positive solutions of semilinear equations in cones. Trans. Amer. Math. Soc. 330: 191–201

    Article  MATH  MathSciNet  Google Scholar 

  23. Ekeland I. and Ghoussoub N. (2002). Selected new aspects of the calculus of variations in the large. Bull. Amer. Math. Soc. 39: 207–265

    Article  MATH  MathSciNet  Google Scholar 

  24. Felli V. and Schneider M. (2005). Compactness and existence results for degenerate critical elliptic equations. Commun. Contemp. Math. 7: 37–73

    Article  MATH  MathSciNet  Google Scholar 

  25. Ferrero A. and Gazzola F. (2001). Existence of solutions for singular critical growth semilinear elliptic equations. J. Diff. Equ. 177: 494–522

    Article  MATH  MathSciNet  Google Scholar 

  26. Jannelli E. (1999). The role played by space dimension in elliptic critical problems. J. Diff. Equ. 156: 407–426

    Article  MATH  MathSciNet  Google Scholar 

  27. Ghoussoub N. and Kang X. (2004). Hardy–Sobolev critical elliptic equations with boundary singularities. Ann. Inst. H. Poincaré, Anal. Non Lin. 21: 767–793

    Article  MATH  MathSciNet  Google Scholar 

  28. Ghoussoub N. and Yuan C. (2000). Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 352: 5703–5743

    Article  MATH  MathSciNet  Google Scholar 

  29. Han P. and Liu Z. (2003). Positive solutions for elliptic equations involving critical Sobolev exponents and Hardy terms with Neumann boundary conditions. Nonlinear Anal. 55: 167–186

    Article  MATH  MathSciNet  Google Scholar 

  30. Kang D. and Peng S. (2004). Existence of solutions for elliptic problems with critical Sobolev–Hardy exponents. Isr. J. Math. 143: 281–297

    MATH  MathSciNet  Google Scholar 

  31. Kang D. and Peng S. (2004). Positive solutions for singular critical elliptic problems. Appl. Math. Lett. 17: 411–416

    Article  MATH  MathSciNet  Google Scholar 

  32. Kang D. and Peng S. (2004). Existence of solutions for elliptic equations with critical Sobolev–Hardy exponents. Nonlinear Anal. 56: 1151–1164

    Article  MathSciNet  Google Scholar 

  33. Palais and R. (1979). The principle of symmetric criticality. Comm. Math. Phys. 69: 19–30

    Article  MATH  MathSciNet  Google Scholar 

  34. Smets D. (2005). Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities. Trans. Amer. Math. Soc. 357: 2909–2938

    Article  MATH  MathSciNet  Google Scholar 

  35. Talenti G. (1976). Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110: 353–372

    Article  MATH  MathSciNet  Google Scholar 

  36. Terracini S. (1996). On positive solutions to a class equations with a singular coefficient and critical exponent. Adv. Diff. Equ. 2: 241–264

    MathSciNet  Google Scholar 

  37. Tolksdorf P. (1984). Regularity for a more general class of quasilinear elliptic equations. J. Diff. Equ. 51: 126–150

    Article  MATH  MathSciNet  Google Scholar 

  38. Vázquez J.L. (1984). A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12: 191–202

    Article  MATH  MathSciNet  Google Scholar 

  39. Wang X. (1991). Neumann problems of semilinear elliptic equations involving critical Sobolev exponents. J. Diff. Equ. 93: 283–310

    Article  MATH  Google Scholar 

  40. Wang Z.Q. and Willem M. (2000). Singular minimization problems. J. Diff. Equ. 161: 307–320

    Article  MATH  MathSciNet  Google Scholar 

  41. Wang Z.Q. and Willem M. (2003). Caffarelli–Kohn–Nirenberg inequalities with remainder terms. J. Funct. Anal. 203: 550–568

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bartsch.

Additional information

Supported by the Alexander von Humboldt foundation and NSFC(10571069,10631030).

Supported by the Alexander von Humboldt foundation and NSFC(10471098,10671195).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartsch, T., Peng, S. & Zhang, Z. Existence and non-existence of solutions to elliptic equations related to the Caffarelli–Kohn–Nirenberg inequalities. Calc. Var. 30, 113–136 (2007). https://doi.org/10.1007/s00526-006-0086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00526-006-0086-1

Mathematics Subject Classification 2000

Navigation