Skip to main content
Log in

Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China’s temperate zone

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of −2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Baldocchi D (2008) Turner Review No. 15. ‘Breathing’ of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Aust J Bot 56:1–26

    Article  CAS  Google Scholar 

  • Barr A, Black TA, McCaughey H (2009) Climatic and phenological controls of the carbon and energy balances of three contrasting boreal forest ecosystems in western Canada. In: Noormets A (ed) Phenology of ecosystem processes. Springer, Dordrecht, pp 3–34

    Chapter  Google Scholar 

  • Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci U S A 96:9701–9704

    Article  CAS  Google Scholar 

  • Chen SL (1961) The flora of China’s economic plants (in Chinese). Science Press, Beijing

    Google Scholar 

  • Chen XQ (1994) Untersuchung zur zeitlich-raeumlichen Aehnlichkeit von phaenologischen und klimatologischen Parametern in Westdeutschland und zum Einfluss geooekologischer Faktoren auf die phaenologische Entwicklung im Gebiet des Taunus. Selbstverlag des Deutschen Wetterdienstes, Offenbach am Main

  • Chen XQ (2009) Phenological obseration in China. In: Hudson IL, Keatley MR (eds) Phenological research: methods for environmental and climate change analysis. Springer, Dordrecht, pp 35–38

    Google Scholar 

  • Chen XQ, Hu B, Yu R (2005) Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China. Global Change Biol 11:1118–1130

    Article  Google Scholar 

  • Chen XQ, Xu L (2012) Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int J Biometeorol 56:695–706

    Article  Google Scholar 

  • China Meteorological Administration (1979) Atlas of the climate of China (in Chinese). Sinomaps Press, Beijing

    Google Scholar 

  • China Meteorological Administration (1993) Observation criterion of agricultural meteorology (in Chinese). China Meteorological Press, Beijing

    Google Scholar 

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

    Article  Google Scholar 

  • Churkina G, Schimel D, Braswell BH, Xiao X (2005) Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biol 11:1777–1787

    Article  Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    Article  CAS  Google Scholar 

  • Fu LG, Chen TQ, Lang KY, Hong T (2005) Higher plants of China (in Chinese). Qingdao Press, Qingdao

    Google Scholar 

  • Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, New York

    Google Scholar 

  • Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Global Change Biol 16:1082–1106

    Article  Google Scholar 

  • Hutchinson MF (2002) Anusplin version 4.2. User Guide. Centre for Resource and Environmental Studies, Australian National University, Canberra

    Google Scholar 

  • Kendall MG (1975) Time series, 2nd edn. Hefner, New York, p 40

    Google Scholar 

  • Kendall MG, Gibbons JD (1990) Rank correlation methods, 5th edn. Edward Arnold, London

    Google Scholar 

  • Lesica P, Kittelson PM (2010) Precipitation and temperature are associated with advanced flowering phenology in a semi-arid grassland. J Arid Environ 74:1013–1017

    Article  Google Scholar 

  • Lieth H (1974) Phenology and seasonality modeling. Springer, New York, p 4

    Book  Google Scholar 

  • Lin YR, Ge XJ, Zhai DT (1999) Flora of China. Science Press, Beijing

    Google Scholar 

  • Lunetta RS, Knight JF, Ediriwickrema J, Lyon JG, Worthy LD (2006) Land-cover change detection using multi-temporal MODIS NDVI data. Remote Sens Environ 105:142–154

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • Matsumoto K (2009) Causal factors for spatial variation in long-term phenological trends in Ginkgo biloba L. in Japan. Int J Climatol 30:1280–1288

    Google Scholar 

  • Matsumoto K, Ohta T, Irasawa M, Nakamura T (2003) Climate change and extension of the Ginkgo biloba L. growing season in Japan. Global Change Biol 9:1634–1642

    Article  Google Scholar 

  • Menzel A (2003) Plant phenological anomalies in Germany and their relation to air temperature and NAO. Clim Chang 57:243–263

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, van Vliet AJH, Wielgolaski F, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Global Change Biol 12:1969–1976

    Article  Google Scholar 

  • Migliavacca M, Sonnentag O, Keenan T, Cescatti A, O’Keefe J, Richardson A (2012) On the uncertainty of phenological responses to climate change, and implications for a terrestrial biosphere model. Biogeosciences 9:2063–2083

    Article  Google Scholar 

  • Moore KE, Fitzjarrald DR, Sakai RK, Goulden ML, Munger JW, Wofsy SC (1996) Seasonal variation in radiative and turbulent exchange at a deciduous forest in central Massachusetts. J Appl Meteorol 35:122–134

    Article  Google Scholar 

  • Myneni RB, Keeling C, Tucker C, Asrar G, Nemani R (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702

    Article  CAS  Google Scholar 

  • Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52

    Article  CAS  Google Scholar 

  • Piao S, Fang J, Zhou L, Ciais P, Zhu B (2006) Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biol 12:672–685

    Article  Google Scholar 

  • Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen G, Chen JM, Ciais P, Davis KJ, Desai AR (2012) Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Global Change Biol 18:566–584

    Article  Google Scholar 

  • Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Article  Google Scholar 

  • Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Global Change Biol 12(2):343–351

    Article  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63:1379–1389

    Article  Google Scholar 

  • Sherry RA, Zhou X, Gu S, Arnone JA, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007) Divergence of reproductive phenology under climate warming. Proc Natl Acad Sci U S A 104:198–202

    Article  CAS  Google Scholar 

  • Shinoda M, Ito S, Nachinshonhor G, Erdenetsetseg D (2007) Phenology of mongolian grasslands and moisture conditions. J Meteorol Soc Jpn 85:359–367

    Article  Google Scholar 

  • Sparks T, Jeffree E, Jeffree C (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87

    Article  CAS  Google Scholar 

  • Sun LJ, Qi YC, Dong YS, Peng Q, He YT, Liu XC, Jia JQ, Cao CC (2012) Research progresses on the effects of global change on microbial community diversity of grassland soils (in Chinese). Prog Geogr 31:1715–1723

    Google Scholar 

  • Theil H (1950) A rank-invariant method of linear and polynomial regression analysis. I, II, III, Nederl. Akad Wetensch Proc 53:386–392, 521–525, 1397–1412

    Google Scholar 

  • Tucker CJ, Newcomb WW, Los SO, Prince SD (1991) Mean and inte-year variation of growing-season normalized difference vegetation index for the Sahel 1981–1989. Int J Remote Sens 12:1133–1135

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  • Wang JY (1963) Agricultural meteorology. Pacemaker Press, Milwaukee

    Google Scholar 

  • Warren M, Hill J, Thomas J, Asher J, Fox R, Huntley B, Roy D, Telfer M, Jeffcoate S, Harding P (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    Article  CAS  Google Scholar 

  • Wilson KB, Baldocchi DD (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agric For Meteorol 100:1–18

    Article  Google Scholar 

  • Yuan W, Zhou G, Wang Y, Han X, Wang Y (2007) Simulating phenological characteristics of two dominant grass species in a semi-arid steppe ecosystem. Ecol Res 22:784–791

    Article  Google Scholar 

  • Zhang XS (2000) Eco-economic functions of the grassland and its patterns (in Chinese). Sci Technol Rev 8:3–7

    Google Scholar 

  • Zhao JB, Zhang YP, Song FQ, Xu ZF, Xiao LY (2013) Phenological response of tropical plants to regional climate change in Xishuangbanna, south-western China. J Trop Ecol 29:161–172

    Article  Google Scholar 

  • Zhao TT, Schwartz MD (2003) Examining the onset of spring in Wisconsin. Clim Res 24:59–70

    Article  Google Scholar 

  • Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res-Atmos 106:20069–20083

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Meteorological Information Center of the China Meteorological Administration for providing phenological data. This research is funded by the National Natural Science Foundation of China under Grant No. 41471033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Tian, Y. & Xu, L. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China’s temperate zone. Int J Biometeorol 59, 1437–1452 (2015). https://doi.org/10.1007/s00484-015-0955-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-0955-4

Keywords

Navigation