Skip to main content
Log in

Weighted estimate of extreme quantile: an application to the estimation of high flood return periods

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

Parametric models are commonly used in frequency analysis of extreme hydrological events. To estimate extreme quantiles associated to high return periods, these models are not always appropriate. Therefore, estimators based on extreme value theory (EVT) are proposed in the literature. The Weissman estimator is one of the popular EVT-based semi-parametric estimators of extreme quantiles. In the present paper we propose a new family of EVT-based semi-parametric estimators of extreme quantiles. To built this new family of estimators, the basic idea consists in assigning the weights to the k observations being used. Numerical experiments on simulated data are performed and a case study is presented. Results show that the proposed estimators are smooth, stable, less sensitive, and less biased than Weissman estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamowski K, Liang G-C, Patry GG (1998) Annual maxima and partial duration flood series analysis by parametric and non-parametric methods. Hydrol Process 12(10–11):1685–1699

    Article  Google Scholar 

  • Adlouni SE, Bobée B, Ouarda T (2008) On the tails of extremeevent distributions in hydrology. J Hydrol NZ355(1–4):16–33

    Google Scholar 

  • Apipattanavis S, Rajagopalan B, Lall U (2010) Local polynomial-based flood frequency estimator for mixed population. J Hydrol Eng 15(9):680–691

    Article  Google Scholar 

  • Balkema A, de Haan L (1974) Residual life time at a great age. Annals of Probab 2(5):792–804

    Article  Google Scholar 

  • Beirlant J, Broniatowski M, Teugels JL, Vynckier P (1995) The mean residual life function at great age: applications to tail estimation. J Stat Plan Inference 45(1-2):21–48

    Article  Google Scholar 

  • Beirlant J, Dierckx G, Guilllou A, Stărică C (2002) On exponential representations of log-spacings of extreme order statistics. Extremes 5(2):157–180

    Article  Google Scholar 

  • Beirlant J, Dierckx G, Guillou A (2005) Estimation of the extreme value index and regression on generalized quantile plots. Ann Stat 11(6):949–970

    Google Scholar 

  • Beirlant J, Goegebeur Y, Teugels J, Segers J (2004) Statistics of extremes: theory and applications. Wiley Series in Probability and Statistics. Wiley, Chichester

  • Beirlant J, Teugels J, Vynckier P (1996a) Practical analysis of extreme values. Leuven University Press, Leuven

  • Beirlant J, Vynckier P, Teugels J (1996b) Excess functions and estimation of the extreme value index. Bernoulli 2(4):293–318

    Article  Google Scholar 

  • Bingham NH, Goldie CM, Teugels JL (1987) Regular variation, vol 27. Encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge

  • Bobée B, Cavadias G, Ashkar F, Bernier J, Rasmussen P (1993) Towards a systematic approach to comparing distributions used in flood frequency analysis. J Hydrol NZ 142:121–136

    Article  Google Scholar 

  • Breiman L, Stone CJ, Kooperberg C (1990) Robust confidence bounds for extreme upper quantiles. J Stat Comput Simul 37(3–4):127–149

    Article  Google Scholar 

  • Brunet-Moret Y (1969) Étude de quelques lois statistiques utilisées en hydrologie. Cahiers d’hydrologie 6(3):3–100

  • Caeiro F, Gomes M (2006) A new class of estimators of a “scale” second order parameter. Extremes 9(3–4):193–211

    Article  Google Scholar 

  • Caeiro F, Gomes M, Rodrigues L (2009) Reduced-bias tail index estimators under a third-order framework. Commun Stat Theory Methods 38(7):1019–1040

    Article  Google Scholar 

  • Chebana F, Adlouni S, Bobée B (2010) Mixed estimation methods for halphen distributions with applications in extreme hydrologic events. Stoch Environ Res Risk Asses 24(3):359–376

    Article  Google Scholar 

  • Chen Y, Xu S, Sha Z, Pieter VG, Sheng-Hua G (2004) Study on L-moment estimations for log-normal distribution with historical flood data. Int Assoc Hydrol Sci 289:107–113

    Google Scholar 

  • Coles S (2001) An introduction to statistical modeling of extreme values. Springer series in statistics, 1st ed. Springer, New York

  • Daouia A, Gardes L, Girard S, Lekina A (2011) Kernel estimators of extreme level curves. Test 20(2):311–333

    Article  Google Scholar 

  • de Haan L (1984) Slow variation and characterization of domains of attraction. In: Tiago de Oliveira J (ed) Statistical extremes and applications. Reidel, Dorchrecht, pp 31–48

  • de Haan L, Ferreira A (2006) Extreme value theory: an Introduction. Springer Series in Operations Research and Financial Engineering. Springer, New York

  • de Haan L, Peng L (1998) Comparison of tail index estimators. Stat Neerl 52(1):60–70

    Article  Google Scholar 

  • de Wet T, Goegebeur Y, Guillou A (2012) Weighted moment estimators for the second order scale parameter. Methodol Comput Appl Probab 14:753–783

    Article  Google Scholar 

  • Dekkers A, de Haan L (1989) On the estimation of the extreme value index and large quantile estimation. Ann Stat 17(4):1795–1832

    Article  Google Scholar 

  • Diebolt J, Gardes L, Girard S, Guillou A (2008) Bias-reduced extreme quantiles estimators of Weibull distributions. J Stat Plan Inference 138(5):1389–1401

    Article  Google Scholar 

  • Dierckx G, Beirlant J, Waal DD, Guillou A (2009) A new estimation method for Weibull-type tails based on the mean excess function. J Stat Plan Inference 139(6):1905–1920

    Article  Google Scholar 

  • Ditlevsen O (1994) Distribution arbitrariness in structural reliability. In: Schueller G, Shinozuka M (eds) 6th international conference on structural safety and reliability. Balkema, Rotterdam, pp 1241–1247

  • Drees H (1995) Refined Pickands estimator of the extreme value index. Ann Stat 23(6):2059–2080

    Article  Google Scholar 

  • Drees H, Kaufmann E (1998) Selecting the optimal sample fraction in univariate extreme value estimation. Stoch Process Appl 75(2):149–172

    Article  Google Scholar 

  • Embrechts P, Klüppelberg C, Mikosch, T (1997) Modelling extremal events for insurance and finance. Springer Verlag, New York

  • Falk M (1995) On testing the extreme value index via the Pot-method. Ann Stat 23(6):2013–2035

    Article  Google Scholar 

  • Feuerverger A, Hall P (1999) Estimating a tail exponent by modelling departure from a Pareto distribution. Ann Stat 27(2):760–781

    Article  Google Scholar 

  • Fisher R, Tippet L (1928) Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc Camb Philos Soc 24:180–190

    Article  Google Scholar 

  • Gardes L, Girard S, Lekina A (2010) Functional nonparametric estimation of conditional extreme quantiles. J Multivar Anal 101(2):419–433

    Article  Google Scholar 

  • Girard A, Guillou A, Stupfler G (2012) Estimating an endpoint with high order moments. Test 21:697–729

    Google Scholar 

  • Gnedenko B (1943) Sur la distribution limite du terme maximum d’une série aléatoire. Ann Math 44(3):423–453

    Article  Google Scholar 

  • Goegebeur Y, Beirlant J, de Wet T (2010) Kernel estimators for the second order parameter in extreme value statistics. J Stat Plan Inference 140(9):2632–2652

    Article  Google Scholar 

  • Gomes MI, Oliveira O (2001) The bootstrap methodology in statistics of extremes: theory and applications–choice of the optimal sample fraction. Extremes 4(4):331–358

    Article  Google Scholar 

  • Guida M, Longo M (1988) Estimation of probability tails based on generalized extreme value distributions. Reliab Eng Syst Saf 20(3):219–242

    Article  Google Scholar 

  • Guillou A, Hall P (2001) A diagnostic for selecting the threshold in extreme value analysis. J R Stat Soc Ser B 63(2):293–305

    Google Scholar 

  • Haddad K, Rahman A (2011) Selection of the best fit flood frequency distribution and parameter estimation procedure: a case study for Tasmania in Australia. Stoch Environ Res Risk Assess 25(3):415–428

    Article  Google Scholar 

  • Haeusler E, Teugels J (1985) On asymptotic normality of Hill’s estimator for the exponent of regular variation. Ann Stat 13(2):743–756

    Article  Google Scholar 

  • Hall P, Park BU (2002) New methods for bias correction at endpoints and boundaries. Ann Stat 30(5):1460–1479

    Article  Google Scholar 

  • Hill B (1975) A simple general approach to inference about the tail of a distribution. Ann Stat 3(5):1163–1174

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1987) Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29(3):339–1349

    Article  Google Scholar 

  • Hosking JRM, Wallis JR, Wood EF (1985) Estimation of the generalized extreme-value distribution by the method of probability-weighted comments. Technometrics 27(3):251–261

    Article  Google Scholar 

  • Kratz M, Resnick S (1996) The QQ-estimator and heavy tails. Stoch Model 12(4):699–724

    Article  Google Scholar 

  • Lall U, il Moon Y, Bosworth K (1993) Kernel flood frequency estimators: bandwidth selection and kernel choice. Water Resour Res 29(4):1003–1015

    Google Scholar 

  • Lang M, Ouarda T, Bobée B (1999) Towards operational guidelines for over-threshold modeling. J Hydrol NZ 225(3–4):103–117

    Article  Google Scholar 

  • Lekina A (2010) Estimation non-paramétrique des quantiles extrêmes conditionnels. PhD thesis, Université de Grenoble

  • Li D, Peng L (2009) Does bias reduction with external estimator of second order parameter work for endpoint. J Stat Plan Inference 139(6):1937–1952

    Article  Google Scholar 

  • Moon Y-I, Lall U (1994) Kernel quantite function estimator for flood frequency analysis. Water Resour Res 30(11):3095–3103

    Google Scholar 

  • Ouarda TB, Girard C, Cavadias GS, Bobée B (2001) Regional flood frequency estimation with canonical correlation analysis. J Hydrol NZ 254(1–4):157–173

    Article  Google Scholar 

  • Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat 3(1):119–131

    Article  Google Scholar 

  • Prescott P, Walden AT (1980) Maximum likelihood estimation of the parameters of generalized extreme-value distribution. Biometrika 67(3):723–724

    Article  Google Scholar 

  • Quintela-del-Río A, Francisco-Fernández M (2011) Analysis of high level ozone concentrations using nonparametric methods. Sci Total Environ 409(6):1123–1133

    Article  Google Scholar 

  • Rényi A (1953) On the theory of order statistics. Acta Math Hung 4(3–4):191–231

    Article  Google Scholar 

  • Rosen O, Weissman I (1996) Comparison of estimation methods in extreme value theory. Commun Stat Theory Methods 24(4):759–773

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas. Springer, Dordrecht

  • Schultze J, Steinebach J (1996) On least squares estimates of an exponential tail coefficient. Stat Decis 14(3):353–372

    Google Scholar 

  • Smith J (1987) Estimating the upper tail of flood frequency distributions. Water Resour Res 23(8):1657–1666

    Article  Google Scholar 

  • Smith RL (1985) Maximum likelihood estimation in a class of nonregular cases. Biometrika 72(1):67–92

    Article  Google Scholar 

  • Smith RL (1986) Extreme value theory based on the r largest annual events. J Hydrol NZ 86(1-2):27–43

    Article  Google Scholar 

  • Stedinger JR (2000) Flood frequency analysis and statistical estimation of flood risk. In: Wohl EE (ed) Inland flood hazards: human, riparian and aquatic communities. Cambridge University Press, Cambridge, pp 334–358

  • Tsourti Z, Panaretos J (2001) A simulation study on the performance of extreme-value index estimators and proposed robustifying modifications. In: 5th Hellenic European conference on computer mathematics and its applications, vol 2. Athens, Greece, pp 847–852

  • Weissman I (1978) Estimation of parameters and large quantiles based on the k-largest observations. J Am Stat Assoc 73(364):812–815

    Google Scholar 

  • Willems P, Guillou A, Beirlant J (2007) Bias correction in hydrologic GPD based extreme value analysis by means of a slowly varying function. J Hydrol NZ 338(3–4):221–236

    Article  Google Scholar 

  • Young-Il M, Lall U, Bosworth K (1993) A comparison of tail probability estimators for flood frequency analysis. J Hydrol NZ 151(2-4):343–363

    Article  Google Scholar 

  • Yue S, Ouarda T, Bobée B, Legendre P, Bruneau P (1999) The Gumbel mixed model for flood frequency analysis. J Hydrol 226(1–2):88–100

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this study was graciously provided by the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Research Chair Program. The authors wish to express their appreciation to the reviewers and the Editor-in-Chef for their invaluable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Lekina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lekina, A., Chebana, F. & Ouarda, T.B.M.J. Weighted estimate of extreme quantile: an application to the estimation of high flood return periods. Stoch Environ Res Risk Assess 28, 147–165 (2014). https://doi.org/10.1007/s00477-013-0705-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-013-0705-2

Keywords

Navigation