Skip to main content

Advertisement

Log in

Characteristics of soil CO2 efflux under an invasive species, Moso bamboo, in forests of central Taiwan

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Key message

Soil respiration in a Moso bamboo forest was very sensitive to high temperatures, while ordinary annual soil respiration was comparable to that of other forests.

Abstract

Moso bamboo (Phyllostachys pubescens) is expanding aggressively by replacing pre-existing vegetation in areas of East Asia such as Taiwan. Such changes in species composition in forest ecosystems have the potential to alter soil respiration (R S) through changing soil carbon (C) processes. This study aimed to characterize the R S in a Moso bamboo forest by determining temporal variations in R S and estimated annual R S in a pure Moso bamboo stand in central Taiwan. The annual R S in the Moso bamboo stand was also compared with that in adjacent coniferous forests and reports in the literature relative to annual litterfall C. Although distinct diurnal variations in R S were found on days with higher R S and soil temperature (T S), R S measured at a single time between 7:00 and 14:00 h showed considerable concordance with the daily mean R S. Seasonal R S variation reflected variations in T S with minimum values in winter and maximum values in summer. This seasonal dynamic change in R S was predicted by the exponential function (r 2 = 0.57) with T S. The Q 10 value derived from Moso bamboo forest was 4.09, substantially higher than that in the adjacent forests (Q 10 = 1.42–2.16) and the worldwide median (2.0–2.4). The estimated annual R S rate (=1088.69 g C m−2 year−1) relative to annual litterfall C of 202.40 g C m−2 year−1 was marginally different among adjacent coniferous forests and reports from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almagro M, López J, Querejeta JI, Martínez-Mena M (2009) Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem. Soil Biol Biochem 41(3):594–605

    Article  CAS  Google Scholar 

  • Arrhenius S (1898) The effect of constant influences upon physiological relationships. Scand Arch Physiol 8:367–415

    Article  Google Scholar 

  • Bond-Lamberty B, Thomson A (2010) A global database of soil respiration data. Biogeosciences 7(6):1915–1926

    Article  CAS  Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572

    Article  CAS  Google Scholar 

  • Buchmann N (2000) Biotic and abiotic factors controlling soil respiration rates in Picea abies stands. Soil Biol Biochem 32:1625–1635

    Article  CAS  Google Scholar 

  • Cable JM, Ogle K, Tyler AP, Pavao-Zuckerman MA, Huxman TE (2009) Woody plant encroachment impacts on soil carbon and microbial processes: results from a hierarchical Bayesian analysis of soil incubation data. Plant Soil 320(1–2):153–167

    Article  CAS  Google Scholar 

  • Cairns MA, Brown S, Helmer EH, Baumgardner GA (1997) Root biomass allocation in the world’s upland forests. Oecologia 111(1):1–11

    Article  Google Scholar 

  • Cao ZH, Zhou GM, Wong MH (2011) Special issue on bamboo and climate change in China. Bot Rev 77(3):188–189

    Article  Google Scholar 

  • Chang SC, Tseng KH, Hsia YJ, Wang CP, Wu JT (2008) Soil respiration in a subtropical montane cloud forest in Taiwan. Agric For Meteorol 148:788–798

    Article  Google Scholar 

  • Chen TH, Liu CP, Chung HY (2011) Growth and biomass of Moso bamboo in Fenghuang Mountain, Nantou County. Q J Chin For 44(1):19–28 (in Chinese with English summary)

    Google Scholar 

  • Cheng CH, Hung CY, Chen CP, Pei CW (2013) Biomass carbon accumulation in aging Japanese cedar plantations in Xitou, central Taiwan. Bot Stud 54:60

    Article  Google Scholar 

  • Curiel Yuste J, Janssens IA, Carrara A, Ceulemans R (2004) Annual Q10 of soil respiration reflects plant phenological patterns as well as temperature sensitivity. Glob Change Biol 10(2):161–169

    Article  Google Scholar 

  • Dannoura M, Maillard P, Fresneau C, Plain C, Berveiller D, Gerant D, Chipeaux C, Bosc A, Ngao J, Damesin C, Loustau D, Epron D (2011) In situ assessment of the velocity of carbon transfer by tracing 13C in trunk CO2 efflux after pulse labelling: variations among tree species and seasons. New Phytol 190(1):181–192

    Article  CAS  PubMed  Google Scholar 

  • Davidson EA, Belk E, Boone RD (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Glob Change Biol 4(2):217–227

    Article  Google Scholar 

  • Davidson EA, Savage K, Bolstad P, Clark DA, Curtis PS, Ellsworth DS, Hanson PJ, Law BE, Luo Y, Pregitzer KS, Randolph JC, Zak D (2002) Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agric For Meterol 113:39–51

    Article  Google Scholar 

  • Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6(6):503–523

    Article  CAS  Google Scholar 

  • Epron D, Farque L, Lucot É, Badot P-M (1999) Soil CO2 efflux in a beech forest: dependence on soil temperature and soil water content. Ann For Sci 56(3):221–226

    Article  Google Scholar 

  • Fan SH, Xiao FM, Wang SL, Guan FY, Yu XJ, Shen ZQ (2009) Soil respiration of Moso bamboo plantation in Huitong Hu’nan Province. Acta Ecol Sin 29(11):5971–5977 (in Chinese with English summary)

    CAS  Google Scholar 

  • Giardina CP, Ryan MG (2002) Total belowground carbon allocation in a fast-growing Eucalyptus plantation estimated using a carbon balance approach. Ecosystems 5(5):487–499

    Article  CAS  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853

    Article  CAS  PubMed  Google Scholar 

  • Hanson PJ, Wullschleger SD, Bohlman SA, Todd DE (1993) Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree Physiol 13(1):1–15

    Article  PubMed  Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochem 48:115–146

    Article  CAS  Google Scholar 

  • Hashimoto S (2005) Temperature sensitivity of soil CO2 production in a tropical hill evergreen forest in northern Thailand. J For Res 10:497–503

    Article  CAS  Google Scholar 

  • Hashimoto S, Tanaka N, Kume T, Yoshifuji N, Hotta N, Tanaka K, Suzuki M (2007) Seasonality of vertically partitioned soil CO2 production in temperate and tropical forest. J For Res 12:209–221

    Article  CAS  Google Scholar 

  • Hirano T, Kim H, Tanaka Y (2003) Long-term half-hourly measurement of soil CO2 concentration and soil respiration in a temperate deciduous forest. J Geophys Res 108(D20):4631

    Article  Google Scholar 

  • Hirano Y, Noguchi K, Ohashi M, Hishi T, Makita N, Fujii S, Finér L (2009) A new method for placing and lifting root meshes for estimating fine root production in forest ecosystems. Plant Root 3:26–31

    Article  Google Scholar 

  • Högberg P, Högberg MN, Gottlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T, Linder S, Nasholm T (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177(1):220–228

    PubMed  Google Scholar 

  • Isagi Y, Kawahara T, Kamo K, Ito H (1997) Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant Ecol 130(1):41–52

    Article  Google Scholar 

  • Janssens IA, Pilegaard K (2003) Large seasonal changes in Q10 of soil respiration in a beech forest. Glob Change Biol 9(6):911–918

    Article  Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T, Montagnani L, Dore S, Rebmann C, Moors EJ, Grelle A, Rannik Ü, Morgenstern K, Oltchev S, Clement R, Guðmundsson J, Minerbi S, Berbigier P, Ibrom A, Moncrieff J, Aubinet M, Bernhofer C, Jensen NO, Vesala T, Granier A, Schulze ED, Lindroth A, Dolman AJ, Jarvis PG, Ceulemans R, Valentini R (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Change Biol 7(3):269–278

    Article  Google Scholar 

  • Jiang ZH (2007) Bamboo and rattan in the world. China Forestry Publishing House, Beijing

    Google Scholar 

  • Kenzo T, Ichie T, Hattori D, Kendawang JJ, Sakurai K, Ninomiya I (2010) Changes in above-and belowground biomass in early successional tropical secondary forests after shifting cultivation in Sarawak, Malaysia. Forest Ecol Manag 260(5):875–882

    Article  Google Scholar 

  • Kourtev PS, Ehrenfeld JG, Häggblom M (2002) Exotic plant species alter the microbial community structure and function in the soil. Ecology 83(11):3152–3166

    Article  Google Scholar 

  • Kume T, Tanaka N, Yoshifuji N, Chatchai T, Suzuki M, Hashimoto S (2013) Soil respiration in response to year-to-year variations in rainfall in a tropical seasonal forest in northern Thailand. Ecohydrol 6(1):134–141

    Article  Google Scholar 

  • Law BE, Ryan MG, Anthoni PM (1999) Seasonal and annual respiration of a ponderosa pine ecosystem. Glob Change Biol 5(2):169–182

    Article  Google Scholar 

  • Liang N, Nakadai T, Hirano T, Qu L, Koike T, Fujinuma Y, Inoue G (2004) In situ comparison of four approaches to estimating soil CO2 efflux in a northern larch (Larix kaempferi Sarg.) forest. Agric For Meteorol 123(1):97–117

    Article  Google Scholar 

  • Litton CM, Ryan MG, Tinker DB, Knight DH (2003) Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density. Can J For Res 33(2):351–363

    Article  Google Scholar 

  • Liu J, Jiang PK, Wang HL, Zhou GM, Wu JS, Yang F, Qian XB (2011) Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. For Ecol Manag 262:1131–1137

    Article  Google Scholar 

  • Luo Y, Zhou X (2010) Soil respiration and the environment. Academic press, Amsterdam

    Google Scholar 

  • Makita N, Kosugi Y, Kamakura M (2014) Linkages between diurnal patterns of root respiration and leaf photosynthesis in Quercus crispula and Fagus crenata seedlings. J Agric Metorol 70(3):151–162

    Article  Google Scholar 

  • Niiyama K, Kajimoto T, Matsuura Y, Yamashita T, Matsuo N, Yashiro Y, Ripin A, Kassim AR, Noor NS (2010) Estimation of root biomass based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia. J Trop Ecol 26(03):271–284

    Article  Google Scholar 

  • Ogura J (1981) The transition of bamboo groves in Kyoto. Proceed. of 17th IUFRO World Congress 5: 3A: 98–103

  • Ohashi M, Kumagai T, Kume T, Gyokusen K, Saitoh TM, Suzuki M (2008) Characteristics of soil CO2 efflux variability in an aseasonal tropical rainforest in Borneo Island. Biogeochem 90:275–289

    Article  CAS  Google Scholar 

  • Okutomi K, Shinoda S, Fukuda H (1996) Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. J Veg Sci 7(5):723–728

    Article  Google Scholar 

  • Osawa A, Aizawa R (2012) A new approach to estimate fine root production, mortality, and decomposition using litter bag experiments and soil core techniques. Plant Soil 355(1–2):167–181

    Article  CAS  Google Scholar 

  • Pavelka M, Acosta M, Marek MV, Kutsch W, Janous D (2007) Dependence of the Q10 values on the depth of the soil temperature measuring point. Plant Soil 292:171–179

    Article  CAS  Google Scholar 

  • Raich JW, Nadelhoffer KJ (1989) Belowground carbon allocation in forest ecosystems: global trends. Ecology 70:1346–1354

    Article  Google Scholar 

  • Raich JW, Potter CS (1995) Global patterns of carbon dioxide emissions from soils. Global Biogeochem Cy 9(1):23–36

    Article  CAS  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44(2):81–99

    Article  Google Scholar 

  • Rey A, Pegoraro E, Tedeschi V, De Parri I, Jarvis PG, Valentini R (2002) Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob Change Biol 8(9):851–866

    Article  Google Scholar 

  • Savage K, Davidson EA, Richardson AD, Hollinger DY (2009) Three scales of temporal resolution from automated soil respiration measurements. Agric For Meteorol 149(11):2012–2021

    Article  Google Scholar 

  • Schulze E-D (2006) Biological control of the terrestrial carbon sink. Biogeosciences 3(2):147–166

    Article  CAS  Google Scholar 

  • Subke JA, Reichstein M, Tenhunen JD (2003) Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biol Biochem 35(11):1467–1483

    Article  CAS  Google Scholar 

  • Suzuki S (1978) Index to Japanese Bambusaceae. Gakken Co., Tokyo

    Google Scholar 

  • Trumbore S (2006) Carbon respired by terrestrial ecosystems—recent progress and challenges. Glob Change Biol 12(2):141–153

    Article  Google Scholar 

  • van’t Hoff JH (1884) Etudes de dynamique chimique (Studies of chemical dynamics). Frederik Muller and Co., Amsterdam, the Netherlands

  • Wang X, Fang J, Zhu B (2008) Forest biomass and root–shoot allocation in northeast China. For Ecol Manag 255(12):4007–4020

    Article  Google Scholar 

  • Yen TM, Lee JS (2011) Comparing aboveground carbon sequestration between Moso bamboo (Phyllostachys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model. For Ecol Manag 261(6):995–1002

    Article  Google Scholar 

  • Yi Z, Fu S, Yi W, Zhou G, Mo J, Zhang D, Ding M, Wang X, Zhou L (2007) Partitioning soil respiration of subtropical forests with different successional stages in south China. For Ecol Manag 243(2–3):178–186

    Article  Google Scholar 

  • Yu G, Chen Z, Piao S, Peng C, Ciais P, Wang Q, Li X, Zhu X (2014) High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci 111(13):4910–4915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Fu S, Ding M, Yi Z, Yi W (2012) Soil CO2 concentration and efflux from three forests in subtropical China. Soil Res 50(4):328–336

    Article  CAS  Google Scholar 

  • Zimmermann M, Meir P, Bird M, Malhi Y, Ccahuana A (2009) Soil biology and biochemistry litter contribution to diurnal and annual soil respiration in a tropical montane cloud forest. Soil Biol Biochem 41(6):1338–1340

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Science Council of the Republic of China supported this work (National Science Council Grant Nos.: 100-2313-B-002-033-MY3; 103-2313-B-002-009-MY3). We are grateful to the Experimental Forest, National Taiwan University, for providing the opportunity to conduct this study. We thank Mr. Chih-Yu Hung for data acquisition. We also thank Ms. Sophie Laplace (National Taiwan University) and Dr. Mizue Ohashi (Hyogo University) for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomonori Kume.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by T. Koike and K. Noguchi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix A

Supplementary figures, table, and references associated with this article can be found (DOCX 69196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, IF., Kume, T., Lin, MY. et al. Characteristics of soil CO2 efflux under an invasive species, Moso bamboo, in forests of central Taiwan. Trees 30, 1749–1759 (2016). https://doi.org/10.1007/s00468-016-1405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-016-1405-6

Keywords

Navigation