Skip to main content

Advertisement

Log in

Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The climate sensitivity of radial growth in European beech (Fagus sylvatica L.) was analyzed within a narrow valley in the Swabian Alb (southwestern Germany). We collected stem disks from three aspects (NE, NW and SW) of trees belonging to different social classes. Common climatic factors limiting growth across the valley were identified using a principal component analysis (PCA). Further, we performed hierarchical cluster analysis (HCA), redundancy analysis (RDA) and bootstrapped correlation analysis to reveal differences in chronologies and climate-growth relationships between aspect and social class. Climatic variables considered in our analyses were monthly and seasonal data on temperature and precipitation, as well as a self-calibrating Palmer drought severity index (sc-PDSI). We identified drought in the period June–August as the most prominent factor limiting growth across the valley. Dominant and co-dominant trees at the NW and SW aspects were found to be particularly drought sensitive, whereas intermediate trees were less susceptible to drought. Underlying causes of established climate–growth relationships are discussed in the context of drought susceptibility, tree-size modulation and tree physiological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ammer C, Albrecht L, Borchert H, Brosinger F, Dittmar C, Elling W, Ewald J, Felbermeier B, Von Gilsa H, Huss J, Kenk G, Kölling C, Kohnle U, Meyer P, Mosandl R, Moosmayer HU, Palmer S, Reif A, Rehfuess KE, Stimm B et al (2005) Zur Zukunft der Buche (Fagus sylvatica L.) in Mitteleuropa: kritische Anmerkungen zu einem Beitrag von Rennenberg et al. (2004). Allg Forst Jagdztg 176(4):60–67

    Google Scholar 

  • Aranda I, Gil L, Pardos JA (2000) Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees Struct Func 14(6):344–352

    Article  Google Scholar 

  • Aussenac G (2000) Interactions between forest stands and microclimate: Ecophysiological aspects and consequences for silviculture. Ann For Sci 57(3):287–301

    Article  Google Scholar 

  • Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ring-porous sessile oak and diffuse-porous beech trees. Tree Physiol 22(17):1201–1210

    Article  PubMed  CAS  Google Scholar 

  • Becker M, Landmann G, Lévy G (1989) Silver fir decline in the Vosges Mountains (France): role of climate and silviculture. Water Air Soil Pollut 48(1–2):77–86

    Google Scholar 

  • Becker M, Nieminen T, Gérémima F (1994) Short-term variations and long-term changes in oak productivity in northeastern France. The role of climate and atmospheric CO2. Ann For Sci 51:477–492

    Article  Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30(3):303–311

    Article  Google Scholar 

  • Bontemps J-D, Hervé J-C, Dhôte J-F (2009) Long-term changes in forest productivity: a consistent assessment in even-aged stands. For Sci 55:549–564

    Google Scholar 

  • Bontemps J-D, Hervé J-C, Dhôte J-F (2010) Dominant radial and height growth reveal comparable historical variations for common beech in north-eastern France. For Ecol Manag 258(8):1455–1463

    Article  Google Scholar 

  • Bouriaud O, Bréda N, Moguédec G, Nepveu G (2004) Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees Struct Func 18(3):264–276

    Article  Google Scholar 

  • Cescatti A, Piutti E (1998) Silvicultural alternatives, competition regime and sensitivity to climate in a European beech forest. For Ecol Manag 102(2–3):213–223

    Article  Google Scholar 

  • Charru M, Seynave I, Morneau F, Bontemps J-D (2010) Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. For Ecol Manag 260(5):864–874

    Article  Google Scholar 

  • Cherubini P, Dobbertin M, Innes JL (1998) Potential sampling bias in long-term forest growth trends reconstructed from tree rings: a case study from the Italian Alps. For Ecol Manag 109(1–3):103–118

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuoic A, Chen A, Gao X, Held R, Jones R, Kolli RK, Kwon W-T, Laprise R, Magana Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In: Solomon S, Qin D, Manning M et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533

    Article  PubMed  CAS  Google Scholar 

  • Cook ER (1985) A time-series analysis approach to tree-ring standardisation. University of Arizona, USA

    Google Scholar 

  • Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree Ring Bull 41:45–53

    Google Scholar 

  • De Luis M, Novak K, Čufar K, Raventós J (2009) Size mediated climate-growth relationships in Pinus halepensis and Pinus pinea. Trees Struct Func 23(5):1065–1073

    Article  Google Scholar 

  • Dittmar C, Elling W (1999) Radial growth of Norway spruce and European beech in relation to weather and altitude. Forstwiss Centralbl 118(4):251–270

    Article  Google Scholar 

  • Dittmar C, Zech W, Elling W (2003) Growth variations of common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe: a dendroecological study. For Ecol Manag 173(1–3):63–78

    Article  Google Scholar 

  • Drobyshev I, Övergaard R, Saygin I, Niklasson M, Hickler T, Karlsson M, Sykes MT (2010) Masting behavior and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For Ecol Manag 259(11):2160–2171

    Article  Google Scholar 

  • Epron D, Dreyer E (1990) Stomatal and non stomatal limitation of photosynthesis by leaf water deficits in three oak species: a comparison of gas exchange and chlorophyll a fluorescence data. Ann For Sci 47(5):435–450

    Article  Google Scholar 

  • Friedrichs DA, Trouet V, Büntgen U, Frank DC, Esper J, Neuwirth B, Löffler J (2009) Species-specific climate sensitivity of tree growth in Central-West Germany. Trees Struct Func 23(4):729–739

    Article  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • García-Suárez AM, Butler CJ, Baillie MGL (2009) Climate signal in tree-ring chronologies in a temperate climate: a multi-species approach. Dendrochronologia 27(3):183–198

    Article  Google Scholar 

  • Geßler A, Schrempp S, Matzarakis A, Mayer H, Rennenberg H, Adams MA (2001) Radiation modifies the effect of water availability on the carbon isotope composition of beech (Fagus sylvatica). New Phytol 150(3):653–664

    Article  Google Scholar 

  • Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees Struct Func 21(1):1–11

    Article  Google Scholar 

  • Gómez-Aparicio L, García-Valdés R, Ruíz-Benito P, Zavala MA (2011) Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Glob Change Biol 17(7):2400–2414

    Article  Google Scholar 

  • GreenLeaf-website (2011) Website GreenLeaf Project. http://greenleaf.unl.edu/downloads/. Accessed 11-3-2011

  • Grundmann BM, Bonn S, Roloff A (2008) Cross-dating of highly sensitive common beech (Fagus sylvatica L.) tree-ring series with numerous missing rings. Dendrochronologia 26(2):109–113

    Article  Google Scholar 

  • Hauser S (2003) Dynamik hochaufgelöster radialer Schaftveränderungen und des Dickenwachstums bei Buchen (Fagus sylvatica L.) der Schwäbischen Alb unter dem Einfluss von Witterung und Bewirtschaftung. University of Freiburg, Germany

    Google Scholar 

  • Hildebrand E, Augustin S, Schack-Kirchner H (1998) Bodenkunliche Charakterisierung der Kernflächen. In: Buchendominierte Laubwälder unter dem Einfluß von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen - Vorcharakterisierung der Untersuchungsflächen. Freiburg

  • Holst T, Rost J, Mayer H (2005) Net radiation balance for two forested slopes on opposite sides of a valley. Int J Biometeorol 49(5):275–284

    Article  PubMed  CAS  Google Scholar 

  • Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12(11):2163–2174

    Article  Google Scholar 

  • Kahle H (2006) Impact of the drought in 2003 on intra- and inter-annual radial growth of beech and spruce along an altitudinal gradient in the Black Forest, Germany. TRACE-tree rings in archaeology, climatology and ecology. In: Proceedings of the DENDROSYMPOSIUM 2005 in Fribourg, Switzerland, vol 4. Schriften des Forschungszentrums Jülich-Reihe Umwelt

  • Kölling C, Walentowski H, Borchert H (2005) Die Buche in Mitteleuropa: eine Waldbaumart mit grandioser Vergangenheit und sicherer Zukunft. AFZ-Der Wald 60:696–701

    Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic Press, San Diego

    Google Scholar 

  • Kraft G (1884) Zur Lehre von den Durchforstungen. Schlagstellungen und Lichtungshieben, Klindworth

    Google Scholar 

  • Lachaud S, Bonnemain J-L (1981) Xylogenèse chez les Dicotylédones arborescentes. I. Modalités de la remise en activité du cambium et de la xylogenèse chez les Hêtres et les Chênes âgés. Can J Bot 59(7):1222–1230

    Article  Google Scholar 

  • Lebourgeois F (2007) Climatic signal in annual growth variation of silver fir (Abies alba Mill.) and spruce (Picea abies Karst.) from the French permanent plot network (RENECOFOR). Ann For Sci 64(3):333–343

    Article  Google Scholar 

  • Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees Struct Func 19(4):385–401

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Developments in environmental modelling. Elsevier, Amsterdam

    Google Scholar 

  • Lemoine D, Granier A, Cochard H (1999) Mechanism of freeze-induced embolism in Fagus sylvatica L. Trees Struct Func 13(4):206–210

    Google Scholar 

  • Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, Cambridge

    Google Scholar 

  • Matzarakis A, Mayer H, Schindler D, Fritsch J (2000) Simulation des Wasserhaushalts eines Buchenwaldes mit dem forstlichen Wasserhaushaltsmodell WBS3. Ber Meteor Inst Univ Freiburg, vol. 5. Meteorological Institute, University of Freiburg, Freiburg, pp 137–146

  • Mayer H, Holst T, Schindler D (2002) Microclimate within beech stands: part I: photosynthetically active radiation. Forstwiss Centralbl 121(6):301–321

    Article  Google Scholar 

  • Mérian P, Lebourgeois F (2011) Size-mediated climate-growth relationships in temperate forests: a multi-species analysis. For Ecol Manag 261(8):1382–1391

    Article  Google Scholar 

  • Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze ED (2010) The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30(6):689–704

    Article  PubMed  CAS  Google Scholar 

  • Neuwirth B, Schweingruber FH, Winiger M (2007) Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24(2–3):79–89

    Article  Google Scholar 

  • Orwig DA, Abrams MD (1997) Variation in radial growth responses to drought among species, site, and canopy strata. Trees Struct Func 11(8):474–484

    Article  Google Scholar 

  • Paar U, Guckland A, Dammann I, Albrecht M, Eichhorn J (2011) Häufigkeit und Intensität der Fruktifikation der Buche. AFZ-Der Wald (6):26–29

  • Palmer W (1965) Meteorological drought. Weather bureau paper, vol 45. Office of Climatology, US Weather Bureau, Washington, DC

    Google Scholar 

  • Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9(2):131–140

    Article  Google Scholar 

  • Peñuelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30(6):829–837

    Article  Google Scholar 

  • Piovesan G, Adams JM (2001) Masting behaviour in beech: linking reproduction and climatic variation. Can J Bot 79(9):1039–1047

    Google Scholar 

  • Piovesan G, Biondi F, Di Filippo A, Alessandrini A, Maugeri M (2008) Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob Change Biol 14(6):1265–1281

    Article  Google Scholar 

  • Piutti E, Cescatti A (1997) A quantitative analysis of the interactions between climatic response and intraspecific competition in European beech. Can J For Res 27(3):277–284

    Article  Google Scholar 

  • Raftoyannis Y, Radoglou K (2002) Physiological responses of beech and sessile oak in a natural mixed stand during a dry summer. Ann Bot 89(6):723–730

    Article  PubMed  Google Scholar 

  • Rennenberg H, Seiler W, Matyssek R, Geßler A, Kreuzwieser J (2004) Die Buche (Fagus sylvatica L.): ein Waldbaum ohne Zukunft im südlichen Mitteleuropa? Allg Forst Jagdztg 175(10/11):210–224

    Google Scholar 

  • Rolland C, Desplanque C, Michalet R, Schweingruber FH (2000) Extreme tree rings in spruce (Picea abies [L.] Karst.) and fir (Abies alba Mill.) stands in relation to climate, site, and space in the southern French and Italian Alps. Arct Antarct Alp Res 32(1):1–13

    Article  Google Scholar 

  • Saurer M, Borella S, Schweingruber F, Siegwolf R (1997) Stable carbon isotopes in tree rings of beech: climatic versus site-related influences. Trees Struct Func 11(5):291–297

    Article  Google Scholar 

  • Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M (2011) Drought matters—declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For Ecol Manag 262(6):947–961

    Article  Google Scholar 

  • Schmitt U, Möller R, Eckstein D (2000) Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and black locust (Robinia pseudoacacia L.) as determined by the ‘‘pinning’’ technique. J Appl Bot 74:10–16

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment dendroecology. Haupt Verlag, Bern

    Google Scholar 

  • Skomarkova M, Vaganov E, Mund M, Knohl A, Linke P, Boerner A, Schulze ED (2006) Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees Struct Func 20(5):571–586

    Article  Google Scholar 

  • Spiecker H, Kahle H, Hauser S (2001) Klima und Witterung als Einflußfaktoren für das Baumwachstum in Laubwäldern: Retrospektiven Analysen und Monitoring. In: Rennenberg H (ed) Buchendominierte Laubwälder unter dem Einfluß von Klima und Bewirtschaftung: Ökologische, waldbauliche und sozialwissenschaftliche Analysen - Vorcharakterisierung der Untersuchungsflächen; Abschlußbericht des SFB 443. Eigenverlag der Universität Freiburg, Freiburg, pp 307–333

    Google Scholar 

  • Střelcová K, Matejka F, Mindáš J (2002) Estimation of beech tree transpiration in relation to their social status in forest stand. J For Sci (Prague) 48(3):130–140

    Google Scholar 

  • Tardif J, Camarero JJ, Ribas M, Gutiérrez E (2003) Spatiotemporal variability in tree growth in the Central Pyrenees: climatic and site influences. Ecol Monogr 73(2):241–257

    Article  Google Scholar 

  • ter Braak CJF (1994) Canonical community ordination. Part I: basic theory and linear methods. Ecoscience 1(2):127–140

    Google Scholar 

  • ter Braak CJF, Šmilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca

    Google Scholar 

  • van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Climate 19(12):2818–2834

    Article  Google Scholar 

  • van der Werf GW, Sass-Klaassen UGW, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25(2):103–112

    Article  Google Scholar 

  • Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244

    Google Scholar 

  • WebWerdis (2011) German weather serivce (DWD): web-based weather request and distribution system. www.dwd.de/webwerdis

  • Wells N, Goddard S, Hayes MJ (2004) A self-calibrating Palmer drought severity index. J Climate 17:2335–2351

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213

    Article  Google Scholar 

Download references

Acknowledgments

The author is grateful to Stadtwald Tuttlingen for supporting the tree sampling. He would like to thank two anonymous reviewers who significantly helped on improving earlier versions of this manuscript. Also Felix Baab and Clemens Koch are thankfully acknowledged for their field assistance and technical support in the lab. This study was conducted with financial support of the EU-FP7 project MOTIVE (‘Models for adaptive forest management’, grant No. 226544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst van der Maaten.

Additional information

Communicated by R. Matyssek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Maaten, E. Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees 26, 777–788 (2012). https://doi.org/10.1007/s00468-011-0645-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-011-0645-8

Keywords

Navigation