Skip to main content

Advertisement

Log in

Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.)

  • Original Article
  • Published:
Trees Aims and scope Submit manuscript

Abstract

The plants in arid and semiarid areas are often limited by water and nutrients. Morpho-functional adjustments to improve nutrient capture may have important implications on plant water balance, and on plant capacity to withstand drought. Several studies have shown that N and P deficiencies may decrease plant hydraulic conductance. Surprisingly, studies on the implications of nutrient limitations on water use in xerophytes are scarce. We have evaluated the effects of strong reductions in nitrogen and phosphorus availability on morphological traits and hydraulic conductance in seedlings of a common Mediterranean shrub, Pistacia lentiscus L.. Nitrogen deficiency resulted in a decrease in aboveground biomass accumulation, but it did not affect belowground biomass accumulation or root morphology. Phosphorus-deficient plants showed a decrease in leaf area, but no changes in aboveground biomass. Root length, root surface area, and specific root length were higher in phosphorus-deficient plants than in control plants. Nitrogen and phosphorus deficiency reduced both root hydraulic conductance and root hydraulic conductance scaled by total root surface area. On the other hand, nutrient limitations did not significantly affect root conductance per unit of foliar surface area. Thus, adaptation to low nutrient availability did not affect seedling capacity for maintaining water supply to leaves. The implications for drought resistance and survival during seedling establishment in semi-arid environments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albaladejo L, Martínez-Mena M, Roldán A, Castillo V (1998) Soil degradation and desertification induced by vegetation in a semiarid environment. Soil Use Manage 14(1):1–5

    Article  Google Scholar 

  • Anuradha M, Narayanan A (1991) Promotion of root elongation by phosphorus deficiency. Plant Soil 136:273–275

    Article  CAS  Google Scholar 

  • Bielenberg DG, Lynch JP, Pell EJ (2001) A decline in nitrogen availability affects plant responses to O3. New Phytol 151:413–425

    Article  CAS  Google Scholar 

  • Blanco MJ, Rodríguez P, Morales MA, Ortuño MF, Torrecillas A (2002) Comparative growth and water relations of Cistus albidus and Cistus montpeliensis plants during water deficit conditions and recovery. Plant Sci 162:107–113

    Article  Google Scholar 

  • Búcio JL, Abreu EH, Calderón LS, Jacobo MF, Simpson J, Estrella LH (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    Article  PubMed  CAS  Google Scholar 

  • Canadell J, Zedler PH (1995) Underground structures of woody plants in Mediterranean ecosystems of Australia, California and Chile. In: Fox M, Kalin M, Zedler PH (eds) Ecology and Biogeography of Mediterranean Ecosystems in Chile, California and Australia. Springer-Verlag, Berlin, pp 177–210

    Google Scholar 

  • Clearwater MJ, Meinzer FC (2001) Relationships between hydraulic architecture and leaf photosynthetic capacity in nitrogen-fertilized Eucalyptus grandis trees. Tree Physiol 21:683–690

    PubMed  CAS  Google Scholar 

  • Comas LH, Eissenstat DM (2002) Linking fine root traits to maximal potential growth rate among 11 mature temperate tree species. Funct Ecol 18:388–397

    Article  Google Scholar 

  • Connor DJ, Fereres E (2005) The physiology of adaptation and yield expression in Olive. In: Janick J. (ed) Horticultural reviews, vol 31. Wiley.

  • Cortina J, Bellot J, Vilagrosa A, Caturla R, Maestre F, Rubio E, Martínez JM, Bonet A (2004) Restauración en semiárido. In: Vallejo y VR, Alloza JA (eds) Avances en el Estudio de la Gestión del Monte Mediterráneo. Fundación CEAM, Valencia, pp. 345–406

    Google Scholar 

  • De Lucia EH, Sipe TW, Herrick J, Maherali H (1998) Sapling biomass allocation and growth in the understory of a deciduous hardwood forest. Am J Bot 85:955–963

    Article  Google Scholar 

  • Eissenstat DM (1991) On the relationship between specific root length and rate of root proliferation: a field study using citrus rootstocks. New Phytol 118:63–68

    Article  Google Scholar 

  • Ewers B, Oren R, Sperry J (2000) Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda. Plant Cell Environ 23:1055–1066

    Article  Google Scholar 

  • Field C, Mooney HA (1982) Leaf age and seasonal effects on light, water, and nitrogen use efficiency in California shrub. Oecologia 56:348–355

    Article  Google Scholar 

  • Fiscus EL (1975) The interaction between osmotic- and pressure-induced water flow in plant roots. Plant Physiol 55:917–922

    PubMed  Google Scholar 

  • Fitter AH (1991) The ecological significance of root system architecture: an economic approach. In: Atkinson D (ed) Plant root growth: an ecological perspective, Blackwell, Oxford

    Google Scholar 

  • Fitter AH, Stickland TR, Harvey ML, Wilson GW (1991) Architectural analysis of plant root systems. I. Architectural correlates of exploitation efficiency. New Phytol 118:375–382

    Article  Google Scholar 

  • Fonseca DE (1999) Manipulación de las características morfoestructurales de plantones de especies forestales mediterráneas producidos en vivero. Implicaciones sobre su viabilidad y adaptación a condiciones de campo en ambiente semi´rido. MSc. thesis IAMZ. Zaragoza.

  • Forde BG, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68

    Article  CAS  Google Scholar 

  • Green JJ, Baddeley JA, Cortina J, Watson CA (2005) Root development in the Mediterranean shrub Pistacia lentiscus as affected by nursery treatments. J Arid Environ 61:1–12

    Article  Google Scholar 

  • Grundon NJ, Robson AD, Lambert MJ, Snowball KA (1997) Nutrient Deficiency & Toxicity Symptoms. In: Reuter DJ, Robinson JB, Dutkiewicz C (eds) Plant Analysis, An interpretation manual, 2nd edn., Collingwood, CSIRO Publishing, Australia 1:35–47

  • Hamilton EW III, Giovannini MS, Moses SJ, Coleman JS, McNaughton SJ (1998) Biomass and mineral element responses of a Serengheti short grass species to nitrogen supply and defoliation: compensation requires a critical [N]. Oecologia 116:407–418

    Article  Google Scholar 

  • Heckathorn SA, De Lucia EH, Zielinski RE (1997) The contribution of drought-related decreases in foliar nitrogen concentration to decreases in photosynthetic capacity during and after drought in prairie grasses. Physiologia Plantarum 101:173–182

    Article  CAS  Google Scholar 

  • Henkin Z, Seligman NG, Noy-Meir I, Kafkafi U, Gutman M (1998) Rehabilitation of Mediterranean dwarf-shrub rangeland with herbicides, fertilizers, and fire. J Range Manage 51(2):193–199

    Article  Google Scholar 

  • Huang B, Nobel PS (1994) Hydraulic conductivity and anatomy for lateral roots of Agave deserti during root growth and drought-induced abscission. J Exp Bot 43:1441–1449

    Article  Google Scholar 

  • Hubbard RM, Ryan MG, Stiller V, Sperry JS (2001) Stomatal conductance and photosynthesis vary linearly with plant hydraulic conductance in ponderosa pine. Plant Cell Environ 24:113–121

    Article  Google Scholar 

  • Hunt R (1978) Plant growth anaylsis. Studies in biology no. 96. Edward Arnold, London

  • Ingestad T, Ågren G (1991) The influence of plant nutrition on biomass allocation. Ecol Appl 1:168–174

    Article  Google Scholar 

  • Jackson RB, Sperry JS, Dawson TE (2000) Root water uptake and transport: scaling physiological processes for global predictions. Trends Plant Sci 5:482–488

    Article  PubMed  CAS  Google Scholar 

  • Killham K (1995) Soil Ecology. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kramer PJ (1988) Changing concepts regarding plant water relations. Plant Cell Environt, (Oxford), 11(7):565–568

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology. Springer-Verlag, New York.

    Google Scholar 

  • Le Houérou HN (1981) Long-term dynamics in arid-land vegetation and ecosystem of North Africa. In: Goodall DW, Perry RA (eds), Arid-land ecosystems: structure, functioning and management. vol 2. Cambridge University Press, Cambridge, UK, 357–384.

  • Levitt J (1980) Responses of plants to environmental stresses. Academic Press, New York

    Google Scholar 

  • Linton MJ, Sperry JS, Williams DG (1998) Limits to water transport in Juniperus osteosperma and Pinus edulis: implications for drought tolerance and regulation of transpiration. Funct Ecol 12:906–911

    Article  Google Scholar 

  • Lloret F, Casanovas C, Peñuelas J (1999) Seedling survival of Mediterranean shrubland species in relation to root: shoot ratio, seed size and water and nitrogen use. Funct Ecol 13:210–216

    Article  Google Scholar 

  • Marschner H (1986) Mineral nutrition of higher plants. Academic Press, New York

    Google Scholar 

  • Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29

    Article  Google Scholar 

  • Nardini A, Salleo S, Tyree MT, Vertovec M (2000) Influence of the ectomycorrhizas formed by Tuber melanosporum Vitt. on hydraulic conductance and water relations of Quercus ilex L. seedlings. Ann For Sci 57:305–312

    Article  Google Scholar 

  • Nardini A, Salleo S, Lo Gullo MA (1998) Root hydraulic conductance of six forest trees: possible adaptive significance of seasonal changes. Plant Biosyst 132(2):97–104

    Google Scholar 

  • Naveh Z (1989) Fire in the Mediterranean: a landscape ecological perspective. In: Goldammer JG, Jenkins J (eds) Fire in Ecosystem Dynamics. 3rd international symposium on fire ecology, Freiburg, FRG, pp. 1–20

  • Nielsen ET, Orcutt DM (1996) Physiology of plants under stress: abiotic factors. Wiley, New York

    Google Scholar 

  • Osonubi O, Oren R, Werk KS, Schulze E-D, Heilmeier H (1988) Performance of two Picea abies (L.) Karst. Stands at different stages of decline. IV. Xylem sap concentrations of magnesium, calcium, potassium, and nitrogen. Oecologia 77:1–6

    Article  Google Scholar 

  • Passioura JB (1988) Response to Dr P.J. Kramer's article, ‘Changing concepts regarding plant water relations’. Plant Cell Environ 11(7):569–571

    Article  Google Scholar 

  • Radin JW (1984) Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. Plant Physiol 76:392–394

    PubMed  CAS  Google Scholar 

  • Radin JW, Boyer JS (1982) Control of leaf expansion by nitrogen nutrition in sunflower plants. Role of hydraulic conductivity and turgor. Plant Physiol 69:771–775

    PubMed  CAS  Google Scholar 

  • Radin JW, Eidenbock MP (1984) Hydraulic conductance as a factor limiting leaf expansion of phosphorus deficient cotton plants. Plant Physiol 75:372–377

    Article  PubMed  CAS  Google Scholar 

  • Radin JW, Eidenbock MP (1986) Vascular patterns in roots of phosphorus- and nitrogen-deficient cotton plants. In: Proceedings of the 1986 Beltwide Cotton Production Research Conference, National Cotton Council, Memphis, TN, 85–89

  • Radin JW, Matthews MA (1989) Water transport properties of cortical cells in roots of nitrogen-and phosphorus- deficient cotton seedlings. Plant Physiol 89:264–268

    PubMed  CAS  Google Scholar 

  • Reinbott TM, Blevins DG (1999) Phosphorus nutritional effects on root hydraulic conductance, xylem water flow and flux of magnesium and calcium in squash plants. Plant Soil 209:263–273

    Article  CAS  Google Scholar 

  • Rubio G, Zhu J. Lynch JP (2003) A critical test of the two prevailing theories of plant response to nutrient availability. Am J Bot 90(1):143–152

    Article  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  PubMed  Google Scholar 

  • Schulze ED, Grebauer G, Ziegler H, Lange OL (1991) Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88:451–455

    Article  Google Scholar 

  • Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric Forest Meteorol 104:13–23

    Article  Google Scholar 

  • Sperry JS (2003) Evolution of water transport and xylem structure. Int J Plant Sci 164(3):115–127

    Article  Google Scholar 

  • Sperry JS, Hacke UG, Oren R, Comstock JP (2002) Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ 25:251–263

    Article  PubMed  Google Scholar 

  • Syvertsen JP, Graham JH (1985) Hydraulic conductivity of roots, mineral nutrition, and leaf gas exchange of citrus roots stocks. J Am Soc Hortic Sci 110:865–869

    Google Scholar 

  • Trubat R, Cortina J, Vilagrosa A (2004) Estado nutricional y establecimiento de especies leñosas en ambiente semiárido. Actas de la III Reunión sobre Repoblaciones Forestales. Cuadernos de la SECF 17:245–251

    Google Scholar 

  • Vallejo VR, Cortina J, Ferran A, Fons J, Romanyà J, Serrasolsas I (1998) Sobre els trets distintius dels sòls mediterranis. Acta Bot Barc 45:603–632.

    Google Scholar 

  • Valladares F, Balaguer L, Martínez-Ferri E, Pérez-Corona ML, Manrique E (2002). Plasticity, instability and canalization: is the phenotypic variation in seedlings of sclerophyll oaks consistent with the environmental unpredictability of Mediterranean ecosystems? New Phytol 156:457–467

    Article  Google Scholar 

  • Valladares F, Martínez-Ferri E, Balaguer L, Pérez-Corona ML, Manrique E (2000) Low leaf-level response to light and nutrients in Mediterranean evergreen oaks: a conservative resource-use strategy? New Phytol 148:79–91

    Article  CAS  Google Scholar 

  • Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrín E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024

    Article  PubMed  CAS  Google Scholar 

  • Waring RH, McDonald AJS, Larsson S, Ericcson T, Wiren A, Ericcson A, Lohammar T (1985) Differences in chemical compositions of plants grown at constant relative growth rates with stable mineral nutrition. Oecologia 66:157–160

    Article  Google Scholar 

  • Williamson L, Ribrioux S, Fitter AH, Leyser HMO (2001) Phosphate availability regulates root system architecture in Arabidopsis thaliana. Plant Physiol 126:875–882

    Article  PubMed  CAS  Google Scholar 

  • Yates EJ, Ashwath N, Midmore D (2002) Responses to nitrogen, phosphorus and sodium chloride by three mangrove species in pot culture. Trees 16:120–125

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the CEAM Foundation (Project: “Selección de precedencias y producción de planta en vivero para la restauración de la cubierta vegetal y control de la erosión en clima semiárido”) and XylRefor (Manipulación de la arquitectura hidráulica en especies vegetales aplicada a la mejora de la calidad de la planta forestal. Grupos 03/155, financed by the Generalitat Valenciana). The CEAM Foundation is funded by Generalitat Valenciana and Bancaixa. We are also grateful to Marian Pérez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Trubat.

Additional information

Communicated by H. Cochard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trubat, R., Cortina, J. & Vilagrosa, A. Plant morphology and root hydraulics are altered by nutrient deficiency in Pistacia lentiscus (L.). Trees 20, 334–339 (2006). https://doi.org/10.1007/s00468-005-0045-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-005-0045-z

Keywords

Navigation