Skip to main content
Log in

Pronephric tubule formation in zebrafish: morphogenesis and migration

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The nephron is the functional subunit of the vertebrate kidney and plays important osmoregulatory and excretory roles during embryonic development and in adulthood. Despite its central role in kidney function, surprisingly little is known about the molecular and cellular processes that control nephrogenesis. The zebrafish pronephric kidney, comprising two nephrons, provides a visually accessible and genetically tractable model system for a better understanding of nephron formation. Using this system, various developmental processes, including the commitment of mesoderm to a kidney fate, renal tubule proliferation, and migration, can be studied during nephrogenesis. Here, we discuss some of these processes in zebrafish with a focus on the pathways that influence renal tubule cell morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Wingert RA, Davidson AJ (2008) The zebrafish pronephros: a model to study nephron segmentation. Kidney Int 73:1120–1127

    Article  CAS  PubMed  Google Scholar 

  2. Gerlach GF, Wingert RA (2013) Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration. Wiley Interdiscip Rev Dev Biol 2:559–585

    Article  CAS  PubMed  Google Scholar 

  3. Wingert RA, Selleck R, Yu J, Song HD, Chen Z, Song A, Zhou Y, Thisse B, Thisse C, McMahon AP, Davidson AJ (2007) The cdx genes and retinoic acid control the positioning and segmentation of the zebrafish pronephros. PLoS Genet 3:1922–1938

    Article  CAS  PubMed  Google Scholar 

  4. Mudumana SP, Hentschel D, Liu Y, Vasilyev A, Drummond IA (2008) odd skipped related1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development 135:3355–3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pfeffer PL, Gerster T, Lun K, Brand M, Busslinger M (1998) Characterization of three novel members of the zebrafish Pax2/5/8 family: dependency of Pax5 and Pax8 expression on the Pax2.1 (noi) function. Development 125:3063–3074

    CAS  PubMed  Google Scholar 

  6. Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M (2002) Nephric lineage specification by Pax2 and Pax8. Genes Dev 16:2958–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Naylor RW, Przepiorski A, Ren Q, Yu J, Davidson AJ (2013) HNF1β is essential for nephron segmentation during nephrogenesis. J Am Soc Nephrol 24:77–87

    Article  CAS  PubMed  Google Scholar 

  8. Zhou X, Vize PD (2004) Proximo-distal specialization of epithelial transport processes within the Xenopus pronephric kidney tubules. Dev Biol 271:322–338

    Article  CAS  PubMed  Google Scholar 

  9. Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brandli AW (2008) Organization of the pronephric kidney revealed by large-scale gene expression mapping. Genome Biol 9:R84

    Article  PubMed  PubMed Central  Google Scholar 

  10. Majumdar A, Lun K, Brand M, Drummond IA (2000) Zebrafish no isthmus reveals a role for pax2.1 in tubule differentiation and patterning events in the pronephric primordia. Development 127:2089–2098

    CAS  PubMed  Google Scholar 

  11. Perner B, Englert C, Bollig F (2007) The Wilms tumor genes wt1a and wt1b control different steps during formation of the zebrafish pronephros. Dev Biol 309:87–96

    Article  CAS  PubMed  Google Scholar 

  12. Tomar R, Mudumana SP, Pathak N, Hukriede NA, Drummond IA (2014) osr1 is required for podocyte development downstream of wt1a. J Am Soc Nephrol 25:2539–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gerlach GF, Wingert RA (2014) Zebrafish pronephros tubulogenesis and epithelial identity maintenance are reliant on the polarity proteins Prkc iota and zeta. Dev Biol 396:183–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miceli R, Kroeger P, Wingert R (2014) Molecular mechanisms of podocyte development revealed by zebrafish kidney research. Cell Dev Biol 3

  15. O'Brien LL, Grimaldi M, Kostun Z, Wingert RA, Selleck R, Davidson AJ (2011) Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Dev Biol 358:318–330

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cheng CN, Wingert RA (2015) Nephron proximal tubule patterning and corpuscles of Stannius formation are regulated by the sim1a transcription factor and retinoic acid in zebrafish. Dev Biol 399:100–116

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, Cheng CN, Verdun VA, Wingert RA (2014) Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling. Dev Biol 386:111–122

    Article  CAS  PubMed  Google Scholar 

  18. Wessely O, Tran U (2011) Xenopus pronephros development—past, present, and future. Pediatr Nephrol 26:1545–1551

    Article  PubMed  PubMed Central  Google Scholar 

  19. Desgrange A, Cereghini S (2015) Nephron patterning: lessons from Xenopus, Zebrafish, and mouse studies. Cells 4:483–499

    Article  PubMed  PubMed Central  Google Scholar 

  20. Vize PD, Jones EA, Pfister R (1995) Development of the Xenopus pronephric system. Dev Biol 171:531–540

    Article  CAS  PubMed  Google Scholar 

  21. Zhang J, Yuan S, Vasilyev A, Amin Arnaout M (2015) The transcriptional coactivator Taz regulates proximodistal patterning of the pronephric tubule in zebrafish. Mech Dev 138(Pt 3):328–325

    Article  CAS  PubMed  Google Scholar 

  22. Wingert RA, Davidson AJ (2011) Zebrafish nephrogenesis involves dynamic spatiotemporal expression changes in renal progenitors and essential signals from retinoic acid and irx3b. Dev Dyn 240:2011–2027

    Article  CAS  PubMed  Google Scholar 

  23. De Groh ED, Swanhart LM, Cosentino CC, Jackson RL, Dai W, Kitchens CA, Day BW, Smithgall TE, Hukriede NA (2010) Inhibition of histone deacetylase expands the renal progenitor cell population. J Am Soc Nephrol 21:794–802

  24. Lienkamp SS, Liu K, Karner CM, Carroll TJ, Ronneberger O, Wallingford JB, Walz G (2012) Vertebrate kidney tubules elongate using a planar cell polarity-dependent, rosette-based mechanism of convergent extension. Nat Genet 44:1382–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lienkamp S, Ganner A, Boehlke C, Schmidt T, Arnold SJ, Schafer T, Romaker D, Schuler J, Hoff S, Powelske C, Eifler A, Kronig C, Bullerkotte A, Nitschke R, Kuehn EW, Kim E, Burkhardt H, Brox T, Ronneberger O, Gloy J, Walz G (2010) Inversin relays Frizzled-8 signals to promote proximal pronephros development. Proc Natl Acad Sci U S A 107:20388–20393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang Q, Margolis B (2007) Apical junctional complexes and cell polarity. Kidney Int 72:1448–1458

    Article  CAS  PubMed  Google Scholar 

  27. Van Itallie CM, Anderson JM (2014) Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol 36:157–165

    Article  PubMed  Google Scholar 

  28. Li WY, Huey CL, Yu AS (2004) Expression of claudin-7 and -8 along the mouse nephron. Am J Physiol Ren Physiol 286:F1063–F1071

    Article  CAS  Google Scholar 

  29. Yu AS, Enck AH, Lencer WI, Schneeberger EE (2003) Claudin-8 expression in Madin-Darby canine kidney cells augments the paracellular barrier to cation permeation. J Biol Chem 278:17350–17359

    Article  CAS  PubMed  Google Scholar 

  30. Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S (2002) Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J Am Soc Nephrol 13:875–886

    CAS  PubMed  Google Scholar 

  31. Thisse B, Pflumio S, Fürthauer M, Loppin B, Heyer V, Degrave A, Woehl R, Lux A, Steffan T, Charbonnier XQ, Thisse C (2001) Expression of the zebrafish genome during embryogenesis. ZFIN Direct Data Submission (http://zfin.org)

  32. Thisse B, Thisse C (2004) Fast release clones: a high throughput expression analysis. ZFIN Direct Data Submission (http://zfin.org)

  33. Thisse C, Thisse B (2005) High throughput expression analysis of ZF-models consortium clones. ZFIN Direct Data Submission (http://zfin.org)

  34. Rauch GJ, Lyons DA, Middendorf I, Friedlander B, Arana N, Reyes T, Talbot WS (2003) Submission and curation of gene expression data. ZFIN Direct Data Submission (http://zfin.org)

  35. McKee R, Gerlach GF, Jou J, Cheng CN, Wingert RA (2014) Temporal and spatial expression of tight junction genes during zebrafish pronephros development. Gene Expr Patterns 16:104–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Muto S, Hata M, Taniguchi J, Tsuruoka S, Moriwaki K, Saitou M, Furuse K, Sasaki H, Fujimura A, Imai M, Kusano E, Tsukita S, Furuse M (2010) Claudin-2-deficient mice are defective in the leaky and cation-selective paracellular permeability properties of renal proximal tubules. Proc Natl Acad Sci U S A 107:8011–8016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gonzalez-Mariscal L, Namorado MC, Martin D, Luna J, Alarcon L, Islas S, Valencia L, Muriel P, Ponce L, Reyes JL (2000) Tight junction proteins ZO-1, ZO-2, and occludin along isolated renal tubules. Kidney Int 57:2386–2402

    Article  CAS  PubMed  Google Scholar 

  38. Siliciano JD, Goodenough DA (1988) Localization of the tight junction protein, ZO-1, is modulated by extracellular calcium and cell-cell contact in Madin-Darby canine kidney epithelial cells. J Cell Biol 107:2389–2399

    Article  CAS  PubMed  Google Scholar 

  39. Meng W, Takeichi M (2009) Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 1:a002899

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M (2010) Alpha-catenin as a tension transducer that induces adherens junction development. Nat Cell Biol 12:533–542

    Article  CAS  PubMed  Google Scholar 

  41. Horsfield J, Ramachandran A, Reuter K, LaVallie E, Collins-Racie L, Crosier K, Crosier P (2002) Cadherin-17 is required to maintain pronephric duct integrity during zebrafish development. Mech Dev 115:15–26

    Article  CAS  PubMed  Google Scholar 

  42. Vestweber D, Kemler R, Ekblom P (1985) Cell-adhesion molecule uvomorulin during kidney development. Dev Biol 112:213–221

    Article  CAS  PubMed  Google Scholar 

  43. Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3 doi: 10.1101/cshperspect.a004994

  44. Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137:1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Itano N, Okamoto S, Zhang D, Lipton SA, Ruoslahti E (2003) Cell spreading controls endoplasmic and nuclear calcium: a physical gene regulation pathway from the cell surface to the nucleus. Proc Natl Acad Sci U S A 100:5181–5186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mammoto A, Connor KM, Mammoto T, Yung CW, Huh D, Aderman CM, Mostoslavsky G, Smith LE, Ingber DE (2009) A mechanosensitive transcriptional mechanism that controls angiogenesis. Nature 457:1103–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Quaggin SE, Kreidberg JA (2008) Development of the renal glomerulus: good neighbors and good fences. Development 135:609–620

    Article  CAS  PubMed  Google Scholar 

  48. Schell C, Wanner N, Huber TB (2014) Glomerular development—shaping the multi-cellular filtration unit. Semin Cell Dev Biol 36:39–49

    Article  CAS  PubMed  Google Scholar 

  49. Serluca FC, Drummond IA, Fishman MC (2002) Endothelial signaling in kidney morphogenesis: a role for hemodynamic forces. Curr Biol 12:492–497

    Article  CAS  PubMed  Google Scholar 

  50. Grote D, Souabni A, Busslinger M, Bouchard M (2006) Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133:53–61

    Article  CAS  PubMed  Google Scholar 

  51. Stewart K, Bouchard M (2014) Coordinated cell behaviours in early urogenital system morphogenesis. Semin Cell Dev Biol 36:13–20

    Article  CAS  PubMed  Google Scholar 

  52. Pyati UJ, Webb AE, Kimelman D (2005) Transgenic zebrafish reveal stage-specific roles for Bmp signaling in ventral and posterior mesoderm development. Development 132:2333–2343

    Article  CAS  PubMed  Google Scholar 

  53. Slanchev K, Putz M, Schmitt A, Kramer-Zucker A, Walz G (2011) Nephrocystin-4 is required for pronephric duct-dependent cloaca formation in zebrafish. Hum Mol Genet 20:3119–3128

    Article  CAS  PubMed  Google Scholar 

  54. Burckle C, Gaude HM, Vesque C, Silbermann F, Salomon R, Jeanpierre C, Antignac C, Saunier S, Schneider-Maunoury S (2011) Control of the Wnt pathways by nephrocystin-4 is required for morphogenesis of the zebrafish pronephros. Hum Mol Genet 20:2611–2627

    Article  CAS  PubMed  Google Scholar 

  55. Bastock R, Strutt H, Strutt D (2003) Strabismus is asymmetrically localised and binds to Prickle and Dishevelled during Drosophila planar polarity patterning. Development 130:3007–3014

    Article  CAS  PubMed  Google Scholar 

  56. Simons M, Gloy J, Ganner A, Bullerkotte A, Bashkurov M, Kronig C, Schermer B, Benzing T, Cabello OA, Jenny A, Mlodzik M, Polok B, Driever W, Obara T, Walz G (2005) Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways. Nat Genet 37:537–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baranowska Korberg I, Hofmeister W, Markljung E, Cao J, Nilsson D, Ludwig M, Draaken M, Holmdahl G, Barker G, Reutter H, Vukojevic V, Clementson Kockum C, Lundin J, Lindstrand A, Nordenskjold A (2015) WNT3 involvement in human bladder exstrophy and cloaca development in zebrafish. Hum Mol Genet 24:5069–5078

    Article  PubMed  Google Scholar 

  58. Joberty G, Petersen C, Gao L, Macara IG (2000) The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2:531–539

    Article  CAS  PubMed  Google Scholar 

  59. Lin D, Edwards AS, Fawcett JP, Mbamalu G, Scott JD, Pawson T (2000) A mammalian PAR-3-PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nat Cell Biol 2:540–547

    Article  CAS  PubMed  Google Scholar 

  60. Tabuse Y, Izumi Y, Piano F, Kemphues KJ, Miwa J, Ohno S (1998) Atypical protein kinase C cooperates with PAR-3 to establish embryonic polarity in Caenorhabditis elegans. Development 125:3607–3614

    CAS  PubMed  Google Scholar 

  61. Vasilyev A, Liu Y, Mudumana S, Mangos S, Lam PY, Majumdar A, Zhao J, Poon KL, Kondrychyn I, Korzh V, Drummond IA (2009) Collective cell migration drives morphogenesis of the kidney nephron. PLoS Biol 7:e9

    Article  PubMed  Google Scholar 

  62. Vasilyev A, Liu Y, Hellman N, Pathak N, Drummond IA (2012) Mechanical stretch and PI3K signaling link cell migration and proliferation to coordinate epithelial tubule morphogenesis in the zebrafish pronephros. PLoS One 7:e39992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang JH, Thampatty BP (2006) An introductory review of cell mechanobiology. Biomech Model Mechanobiol 5:1–16

    Article  CAS  PubMed  Google Scholar 

  64. Subramanya AR, Ellison DH (2014) Distal convoluted tubule. Clin J Am Soc Nephrol 9:2147–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roy A, Al-bataineh MM, Pastor-Soler NM (2015) Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 10:305–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Davidson.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naylor, R.W., Davidson, A.J. Pronephric tubule formation in zebrafish: morphogenesis and migration. Pediatr Nephrol 32, 211–216 (2017). https://doi.org/10.1007/s00467-016-3353-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-016-3353-1

Keywords

Navigation