Skip to main content

Advertisement

Log in

Renin–angiotensin system–growth factor cross-talk: a novel mechanism for ureteric bud morphogenesis

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The renin–angiotensin system (RAS) plays a critical role in kidney development. Mutations in the genes encoding components of the RAS cause a spectrum of congenital abnormalities of the kidney and renal collecting system, ranging from hypoplasia of the renal medulla and hydronephrosis in mice to renal tubular dysgenesis in humans. However, the mechanisms by which an intact RAS controls proper renal system development and how aberrations in the RAS result in abnormal kidney and renal collecting system development are poorly understood. The renal collecting system originates from the ureteric bud (UB). A number of transcription and growth factors regulate UB branching morphogenesis to ultimately form the ureter, pelvis, calyces, medullary, and cortical collecting ducts. Importantly, UB morphogenesis is a key developmental process that controls organogenesis of the entire metanephros. This review emphasizes emerging insights into the role for the RAS in UB morphogenesis and explores the mechanisms whereby RAS regulates this important process. A conceptual framework derived from recent work indicates that cooperation between the angiotensin II AT1 receptor and receptor tyrosine kinase signaling performs essential functions during renal collecting system development via control of UB branching morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yosypiv IV (2004) Hypothesis: a novel role for the renin-angiotensin system in ureteric bud branching. Organogenesis 1:26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rossetti S, Harris PC (2007) Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J Am Soc Nephrol 18:1374–1380

    Article  CAS  PubMed  Google Scholar 

  3. Nagata M, Tanimoto K, Fukamizu A, Kon Y, Sugiyama F, Yagami K, Murakami K, Watanabe T (1996) Nephrogenesis and renovascular development in angiotensinogen-deficient mice. Lab Invest 75:745–753

    CAS  PubMed  Google Scholar 

  4. Niimura F, Labosky PA, Kakuchi J, Okubo S, Yoshida H, Oikawa T, Ichiki T, Naftilan AJ, Fogo A, Inagami T (1995) Gene targeting in mice reveals a requirement for angiotensin in the development and maintenance of kidney morphology and growth factor regulation. J Clin Invest 96:2947–2954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Takahashi N, Lopez ML, Cowhig JE Jr, Taylor MA, Hatada T, Riggs E, Lee G, Gomez RA, Kim HS, Smithies O (2005) Ren1c homozygous null mice are hypotensive and polyuric, but heterozygotes are indistinguishable from wild-type. J Am Soc Nephrol 16:125–132

    Article  PubMed  Google Scholar 

  6. Esther CR Jr, Howard TE, Marino EM, Goddard JM, Capecchi MR, Bernstein KE (1996) Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility. Lab Invest 7:953–965

    Google Scholar 

  7. Oliverio MI, Kim HS, Ito M, Le T, Audoly L, Best CF, Hiller S, Kluckman K, Maeda N, Smithies O, Coffman TM (1998) Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. Proc Natl Acad Sci USA 95:15496–15501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tsuchida S, Matsusaka T, Chen X, Okubo S, Niimura F, Nishimura H, Fogo A, Utsunomiya H, Inagami T, Ichikawa I (1998) Murine double nullizygotes of the angiotensin type 1A and 1B receptor genes duplicate severe abnormal phenotypes of angiotensinogen nullizygotes. J Clin Invest 101:755–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Miyazaki Y, Tsuchida S, Fogo A, Ichikawa I (1999) The renal lesions that develop in neonatal mice during angiotensin inhibition mimic obstructive nephropathy. Kidney Int 55:1683–1695

    Article  CAS  PubMed  Google Scholar 

  10. Gribouval O, Gonzales M, Neuhaus T (2005) Mutations in genes in the renin-angiotensin system are associated with autosomal recessive renal tubular dysgenesis. Nat Genet 37:964–968

    Article  CAS  PubMed  Google Scholar 

  11. North American Pediatric Renal Trials and Collaborative Studies (2006) Annual report. NAPRTCS, Boston

  12. Saxen L (1987) Organogenesis of the kidney. Cambridge University Press, Cambridge

    Book  Google Scholar 

  13. Ekblom P (1989) Developmentally regulated conversion of mesenchyme to epithelium. FASEB J 3:2141–2150

    Article  CAS  PubMed  Google Scholar 

  14. Grobstein C (1953) Inductive epithelio-mesenchymal interaction in cultured organ rudiments of the mouse metanephros. Science 118:52–55

    Article  CAS  PubMed  Google Scholar 

  15. Batourina E, Choi C, Paragas N, Bello N, Hensle T, Costantini FD, Schuchardt A, Bacallao RL, Mendelsohn CL (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet 32:109–115

    Article  CAS  PubMed  Google Scholar 

  16. Batourina E, Tsai S, Lambert S, Sprenkle P, Viana R, Dutta S, Hensle T, Wang F, Niederreither K, McMahon AP, Carroll TJ, Mendelsohn CL (2005) Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder. Nat Genet 37:1082–1089

    Article  CAS  PubMed  Google Scholar 

  17. Sakurai H, Nigam S (1998) In vitro branching tubulogenesis: implications for developmental and cystic disorders, nephron number, renal repair, and nephron engineering. Kidney Int 54:14–26

    Article  CAS  PubMed  Google Scholar 

  18. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    Article  CAS  PubMed  Google Scholar 

  19. Lisle SJ, Lewis RM, Petry CJ, Ozanne SE, Hales CN, Forhead AJ (2003) Effect of maternal iron restriction during pregnancy on renal morphology in the adult rat offspring. Br J Nutr 90:33–39

    Article  CAS  PubMed  Google Scholar 

  20. Costantini F (2006) Renal branching morphogenesis: concepts, questions, and recent advances. Differentiation 74:402–421

    Article  CAS  PubMed  Google Scholar 

  21. Pachnis V, Mankoo B, Costantini F (1993) Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119:1005–1017

    CAS  PubMed  Google Scholar 

  22. Brophy PD, Ostrom L, Lang KM, Dressler GR (2001) Regulation of ureteric bud outgrowth by Pax2-dependent activation of the glial derived neurotrophic factor gene. Development 128:4747–4756

    CAS  PubMed  Google Scholar 

  23. Clarke JC, Patel SR, Raymond RM Jr, Andrew S, Robinson BG, Dressler GR, Brophy PD (2006) Regulation of c-Ret in the developing kidney is responsive to Pax2 gene dosage. Hum Mol Genet 15:3420–3428

    Article  CAS  PubMed  Google Scholar 

  24. Hatini A, Huh SO, Herzlinger D, Soares VC, Lai E (1996) Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. Genes Dev 10:1467–1478

    Article  CAS  PubMed  Google Scholar 

  25. Mendelsohn C, Batourina E, Fung S, Gilbert T, Dodd J (1999) Stromal cells mediate retinoid-dependent functions essential for renal development. Development 126:1139–1148

    CAS  PubMed  Google Scholar 

  26. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP (2005) Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Dev Cell 9:283–292

    Article  CAS  PubMed  Google Scholar 

  27. Majumdar A, Vainio S, Kispert A, McMahon J, McMahon AP (2003) Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130:3175–3185

    Article  CAS  PubMed  Google Scholar 

  28. Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD, Wilson PD, Mason IJ, Licht JD (2006) Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299:466–477

    Article  CAS  PubMed  Google Scholar 

  29. Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, Kuure S, Sainio K, Rosenblum ND (2008) Canonical WNT/beta-catenin signaling is required for ureteric branching. Dev Biol 317:83–94

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt-Ott KM, Chen X, Paragas N, Levinson RS, Mendelsohn CL, Barasch J (2006) c-kit delineates a distinct domain of progenitors in the developing kidney. Dev Biol 299:238–249

    Article  CAS  PubMed  Google Scholar 

  31. Gao X, Chen X, Taglienti M, Rumballe B, Little MH, Kreidberg JA (2005) Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa. Development 132:5437–5449

    Article  CAS  PubMed  Google Scholar 

  32. Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, Herzlinger D (1999) FGF-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126:547–554

    CAS  PubMed  Google Scholar 

  33. Sakurai H, Barros EJ, Tsukamoto T, Barasch J, Nigam SK (1997) An in vitro tubulogenesis system using cell lines derived from the embryonic kidney shows dependence on multiple soluble growth factors. Proc Natl Acad Sci USA 94:6279–6284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277:643–649

    Article  CAS  PubMed  Google Scholar 

  35. Ritvos O, Tuuri T, Erämaa M, Sainio K, Hildén K, Saxén L, Gilbert SF (1995) Activin disrupts epithelial branching morphogenesis in developing glandular organs of the mouse. Mech Dev 50:229–245

    Article  CAS  PubMed  Google Scholar 

  36. Sakurai H, Tsukamoto T, Kjelsberg CA, Cantley LG, Nigam SK (1997) Department EGF receptor ligands are a large fraction of in vitro branching morphogens secreted by embryonic kidney. Am J Physiol 273:F463–F472

    CAS  PubMed  Google Scholar 

  37. Qiao J, Bush KT, Steer DL, Stuart RO, Sakurai H, Wachsman W, Nigam SK (2001) Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech Dev 109:123–135

    Article  CAS  PubMed  Google Scholar 

  38. Zhao H, Kegg H, Grady S, Truong HT, Robinson ML, Baum M, Bates CM (2004) Center role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 276:403–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM (2006) Department receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem 281:15694–15700

    Article  CAS  PubMed  Google Scholar 

  40. Bernardini N, Bianchi F, Lupetti M, Dolfi A (1996) Immunohistochemical localization of the epidermal growth factor, transforming growth factor alpha, and their receptor in the human mesonephros and metanephros. Dev Dyn 206:231–238

    Article  CAS  PubMed  Google Scholar 

  41. Sakurai H, Tsukamoto T, Kjelsberg CA, Cantley LG, Nigam SK (1997) EGF receptor ligands are a large fraction of in vitro branching morphogens secreted by embryonic kidney. Am J Physiol 273:F463–F472

    CAS  PubMed  Google Scholar 

  42. Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, LaMantia C, Mourton T, Herrup K, Harris RC (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–234

    Article  CAS  PubMed  Google Scholar 

  43. Maeshima A, Vaughn DA, Choi Y, Nigam SK (2006) Activin A is an endogenous inhibitor of ureteric bud outgrowth from the Wolffian duct. Dev Biol 295:473–485

    Article  CAS  PubMed  Google Scholar 

  44. Cain JE, Hartwig S, Bertram JF, Rosenblum ND (2008) Bone morphogenetic protein signaling in the developing kidney: present and future. Differentiation 76:831–842

    Article  CAS  PubMed  Google Scholar 

  45. Bush KT, Sakurai H, Steer DL, Leonard MO, Sampogna RV, Meyer TN, Schwesinger C, Qiao J, Nigam SK (2004) TGF-beta superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Dev Biol 266:285–298

    Article  CAS  PubMed  Google Scholar 

  46. Piscione TD, Yager TD, Gupta IR, Grinfeld B, Pei Y, Attisano L, Wrana JL, Rosenblum ND (1997) BMP-2 and OP-1 exert direct and opposite effects on renal branching morphogenesis. Am J Physiol 273:F961–F975

    CAS  PubMed  Google Scholar 

  47. Miyazaki Y, Oshima K, Fogo A, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cain JE, Nion T, Jeulin D, Bertram JF (2005) BMP-4 amplifies asymmetric ureteric branching in the developing mouse kidney in vitro. Kidney Int 67:420–431

    Article  CAS  PubMed  Google Scholar 

  49. Hartwig S, Bridgewater D, Di Giovanni V, Cain J, Mishina Y, Rosenblum ND (2008) BMP receptor ALK3 controls collecting system development. J Am Soc Nephrol 19:117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wolf G, Thaiss F, Schoeppe W, Stahl RA (1992) Angiotensin II-induced proliferation of cultured murine mesangial cells: inhibitory role of atrial natriuretic peptide. J Am Soc Nephrol 3:1270–1278

    CAS  PubMed  Google Scholar 

  51. Goto M, Mukoyama M, Suga S, Matsumoto T, Nakagawa M, Ishibashi R, Kasahara M, Sugawara A, Tanaka I, Nakao K (1997) Growth-dependent induction of angiotensin II type 2 receptor in rat mesangial cells. Hypertension 30:358–362

    Article  CAS  PubMed  Google Scholar 

  52. Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Santos RA, Ferreira AJ (2007) Angiotensin-(1–7) and the renin-angiotensin system. Curr Opin Nephrol Hypertens 16:122–128

    Article  CAS  PubMed  Google Scholar 

  54. Miyazaki Y, Tsuchida S, Nishimura H, Pope JC 4th, Harris RC, McKanna JM, Inagami T, Hogan BL, Fogo A, Ichikawa I (1998) Angiotensin induces the urinary peristaltic machinery during the perinatal period. J Clin Invest 102:1489–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schaefer C (2003) Angiotensin II-receptor-antagonists: further evidence of fetotoxicity but not teratogenicity. Birth Defects Res Part A Clin Mol Teratol 67:591–594

    Article  CAS  Google Scholar 

  56. Tabacova S, Little R, Tsong Y, Vega A, Kimmel CA (2003) Adverse pregnancy outcomes associated with maternal enalapril antihypertensive treatment. Pharmacoepidemiol Drug Saf 12:633–646

    Article  CAS  PubMed  Google Scholar 

  57. Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H, Ichiki T, Threadgill D, Phillips JA 3rd, Hogan BM, Fogo A, Brock JW 3rd, Inagami T, Ichikawa I (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10

    CAS  PubMed  Google Scholar 

  58. Oshima K, Miyazaki Y, Brock JW, Adams MC, Ichikawa I, Pope JC (2001) Angiotensin type II receptor expression and ureteral budding. J Urol 166:1848–1852

    Article  CAS  PubMed  Google Scholar 

  59. Zhang H, Wada J, Hida K, Tsuchiyama Y, Hiragushi K, Shikata K, Wang H, Lin S, Kanwar YS, Makino H (2001) Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J Biol Chem 276:17132–17139

    Article  CAS  PubMed  Google Scholar 

  60. Lacoste M, Cai Y, Guicharnaud L, Mounier F, Dumez Y, Bouvier R, Dijoud F, Gonzales M, Chatten J, Delezoide AL, Daniel L, Joubert M, Laurent N, Aziza J, Sellami T, Amar HB, Jarnet C, Frances AM, Daïkha-Dahmane F, Coulomb A, Neuhaus TJ, Foliguet B, Chenal P, Marcorelles P, Gasc JM, Corvol P, Gubler MC (2006) Renal tubular dysgenesis, a not uncommon autosomal recessive disorder leading to oligohydramnios: role of the renin-angiotensin system. J Am Soc Nephrol 17:2253–2263

    Article  CAS  PubMed  Google Scholar 

  61. Iosipiv IV, Schroeder M (2003) A role for angiotensin II AT1 receptors in ureteric bud cell branching. Am J Physiol 285:F199–F207

    CAS  Google Scholar 

  62. Lopez ML, Pentz ES, Robert B, Abrahamson DR, Gomez RA (2001) Embryonic origin and lineage of juxtaglomerular cells. Am J Physiol 281:F345–F356

    CAS  Google Scholar 

  63. Yosypiv IV, Schroeder M, El-Dahr SS (2006) AT1R-EGFR crosstalk regulates ureteric bud branching morphogenesis. J Am Soc Nephrol 17:1005–1014

    Article  CAS  PubMed  Google Scholar 

  64. Zhang SL, Moini B, Ingelfinger JR (2004) Angiotensin II increases Pax-2 expression in fetal kidney cells via the AT2 receptor. J Am Soc Nephrol 15:1452–1465

    Article  CAS  PubMed  Google Scholar 

  65. Nilsson AB, Nitescu N, Chen Y, Guron GS, Marcussen N, Matejka GL, Friberg P (2000) IGF-I treatment attenuates renal abnormalities induced by neonatal ACE inhibition. Am J Physiol 279:R1050–R1060

    CAS  Google Scholar 

  66. Stirling D, Magness RR, Stone R, Waterman MR, Simpson ER (1990) Angiotensin II inhibits luteinizing hormone-stimulated cholesterol side chain cleavage expression and stimulates basic fibroblast growth factor expression in bovine luteal cells in primary culture. J Biol Chem 265:5–8

    CAS  PubMed  Google Scholar 

  67. Yosypiv IV, Boh MK, Spera M, El-Dahr SS (2008) Downregulation of Spry-1, an inhibitor of GDNF/Ret, as a mechanism for angiotensin II-induced ureteric bud branching. Kidney Int doi:https://doi.org/10.1038/ki.2008.378

  68. Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR (2002) Ureteric bud outgrowth in response to RET activation is mediated by phosphatidylinositol3-kinase. Dev Biol 243:128–136

    Article  CAS  PubMed  Google Scholar 

  69. Kim D, Dressler GR (2007) PTEN modulates GDNF/RET mediated chemotaxis and branching morphogenesis in the developing kidney. Dev Biol 307:290–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (2001) Angiotensin receptors: signaling,vascular pathophysiology, and interactions with ceramide. Am J Physiol 281:H2337–H2365

    CAS  Google Scholar 

  71. Watanabe G, Lee RJ, Albanese C, Rainey WE, Batle D, Pestell RG (1996) Angiotensin II activation of cyclin D1-dependent kinase activity. J Biol Chem 271:22570–22577

    Article  CAS  PubMed  Google Scholar 

  72. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A (1999) EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402:884–888

    Article  CAS  PubMed  Google Scholar 

  73. Ushio-Fukai M, Hilenski L, Santanam N, Becker PL, Ma Y, Griendling KK, Alexander RW (2001) Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J Biol Chem 276:48269–48275

    Article  CAS  PubMed  Google Scholar 

  74. Olivares-Reyes JA, Shah BH, Hernandez-Aranda J, Garcia-Gaballero A, Farshori MP, Gatcia-Sainz JA, Catt KJ (2005) Agonist-induced interactions between angiotensin AT1 and epidermal growth factor receptors. Mol Pharmacol 68:356–364

    Article  CAS  PubMed  Google Scholar 

  75. Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T (1995) The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95:651–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. AbdAlla S, Lother H, Abdel-tawab AM, Quitterer U (2001) The angiotensin II AT2 receptor is an AT1 receptor antagonist. J Biol Chem 276:39721–39726

    Article  CAS  PubMed  Google Scholar 

  77. Garcia-Villalba P, Denkers ND, Wittwer CT, Wittwer CT, Hoff C, Nelson RD, Mauch TJ (2003) Real-time PCR quantification of AT1 and AT2 angiotensin receptor mRNA expression in the developing rat kidney. Nephron. Exp Nephrol 94:e154–e159

    Article  CAS  Google Scholar 

  78. Yosypiv IV (2004) A new role for the renin–angiotensin system in ureteric bud branching. Organogenesis 1:26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author would like to thank colleagues who have contributed in various ways to our studies in this area, particularly Mercedes Schroeder, Mary Kate Boh, Melissa Spera, Renfang Song, and Samir El-Dahr. The original work was supported by NIH Grants P20 RR17659 and DK071699-01 (Ihor Yosypiv).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ihor V. Yosypiv.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yosypiv, I.V. Renin–angiotensin system–growth factor cross-talk: a novel mechanism for ureteric bud morphogenesis. Pediatr Nephrol 24, 1113–1120 (2009). https://doi.org/10.1007/s00467-008-1021-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-008-1021-9

Keywords

Navigation