Skip to main content
Log in

Updated lagrangian mixed finite element formulation for quasi and fully incompressible fluids

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

We present a mixed velocity–pressure finite element formulation for solving the updated Lagrangian equations for quasi and fully incompressible fluids. Details of the governing equations for the conservation of momentum and mass are given in both differential and variational form. The finite element interpolation uses an equal order approximation for the velocity and pressure unknowns. The procedure for obtaining stabilized FEM solutions is outlined. The solution in time of the discretized governing conservation equations using an incremental iterative segregated scheme is described. The linearization of these equations and the derivation of the corresponding tangent stiffness matrices is detailed. Other iterative schemes for the direct computation of the nodal velocities and pressures at the updated configuration are presented. The advantages and disadvantages of choosing the current or the updated configuration as the reference configuration in the Lagrangian formulation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Badia S, Codina R (2009) Unified stabilized finite element formulation for the Stokes and the Darcy problems. SIAM J Numer Anal 47:1971–2000

    Article  MATH  MathSciNet  Google Scholar 

  2. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  3. Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid–structure interaction: methods and applications. Wiley, London

    Google Scholar 

  4. Belytschko T, Liu WK, Moran B (2013) Non linear finite element for continua and structures, 2nd edn. Wiley, London

    Google Scholar 

  5. Bonet J, Wood RD (2008) Non linear continuum mechanics for finite element analysis, 2nd edn. Wiley, London

    Book  Google Scholar 

  6. Brackbill JU, Kothe DB, Ruppel HM (1988) FLIP: a low-dissipation, particle-in-cell method for fluid flow. Comput Phys Commun 48:25–38

    Article  Google Scholar 

  7. Burgess D, Sulsky D, Brackbill JU (1992) Mass matrix formulation of the FLIP particle-in-cell method. J Comput Phys 103(1):1–15

    Article  MATH  MathSciNet  Google Scholar 

  8. Codina R (2002) Stabilized finite element approximation of transient incompressible flows using orthogonal subscales. Comput Meth Appl Mech Eng 191:4295–4321

    Article  MATH  MathSciNet  Google Scholar 

  9. Codina R, Coppola-Owen H, Nithiarasu P, Liu C (2006) Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier–Stokes equations. Int J Numer Meth Eng 66:1672–1689

    Article  MATH  MathSciNet  Google Scholar 

  10. Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, London

    Book  Google Scholar 

  11. Franci A, Oñate E, Carbonell JM (2013) Unified Lagrangian formulation for analysis of fluid–structure interaction problems. Research Report PI-400, CIMNE, Barcelona

  12. Harlow FH (1963) The particle-in-cell computing method for fluid dynamics. Methods Comput Phys 3:219

    Google Scholar 

  13. Holzaphel GA (2000) Non linear solid mechanics. Wiley, London

    Google Scholar 

  14. Huerta A, Vidal Y, Bonet J (2006) Updated Lagrangian formulation for corrected smooth particle hydrodynamics. Int J Comput Methods 3(4):383–399

    Article  MATH  MathSciNet  Google Scholar 

  15. Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computional mechanics, vol 3. Wiley, London, pp 5–60

  16. Idelsohn SR, Oñate E, Del Pin F (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Meth Eng 61(7):964– 989

    Article  MATH  Google Scholar 

  17. Idelsohn SR, Marti J, Limache A, Oñate E (2008) Unified Lagrangian formulation for elastic solids and incompressible fluids: application to fluid-structure interaction problems via the PFEM. Comput Meth Appl Mech Eng 197(19–20):1762–1776

    Article  MATH  Google Scholar 

  18. Li S, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55:1

    Article  Google Scholar 

  19. Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Pan C, Uras RA, Chang CT (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Methods Eng 3(1):3–80

    Article  MathSciNet  Google Scholar 

  20. Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76

    Article  MathSciNet  Google Scholar 

  21. Oñate E (1998) Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Comput Meth Appl Mech Eng 151:233–267

    Article  MATH  Google Scholar 

  22. Oñate E (2000) A stabilized finite element method for incompressible viscous flows using a finite increment calculus formulation. Comput Methods Appl Mech Eng 182(1–2):355–370

    Article  MATH  Google Scholar 

  23. Oñate E (2003) Multiscale computational analysis in mechanics using finite calculus: an introduction. Comput Meth Appl Mech Eng 192(28–30):3043–3059

    Article  MATH  Google Scholar 

  24. Oñate E (2004) Possibilities of finite calculus in computational mechanics. Int J Numer Meth Eng 60(1):255–281

    Article  MATH  Google Scholar 

  25. Oñate E, Idelsohn SR, Del Pin F, Aubry R (2004) The particle finite element method. An Overv Int J Comput Methods 1(2):267–307

    Article  MATH  Google Scholar 

  26. Oñate E, García J, Idelsohn SR, Del Pin F (2006) FIC formulations for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches. Comput Meth Appl Mech Eng 195(23–24):3001–3037

    Article  MATH  Google Scholar 

  27. Oñate E, Valls A, García J (2007) Computation of turbulent flows using a finite calculus-finite element formulation. Int J Numer Meth Eng 54:609–637

    Article  MATH  Google Scholar 

  28. Oñate E (2009) Structural analysis with the finite element method. Linear statics. Volume 1. Basis and solids. CIMNE-Springer, Berlin

    Book  MATH  Google Scholar 

  29. Oñate E, Celigueta MA, Idelsohn SR, Salazar F, Suárez B (2011) Possibilities of the particle finite element method for fluid–soil–structure interaction problems. Comput Mech 48(3):307–318

    Article  MATH  MathSciNet  Google Scholar 

  30. Oñate E, Idelsohn SR, Felippa C (2011) Consistent pressure Laplacian stabilization for incompressible continua via higher-order finite calculus. Int J Numer Meth Eng 87(1–5):171–195

    Article  MATH  Google Scholar 

  31. Oñate E, Franci A, Carbonell JM (2014) Lagrangian formulation for finite element analysis of incompressible fluids with reduced mass losses. Int J Numer Meth Fluids 74:699–731. doi:10.1002/fld.3870

  32. Oñate E, Nadukandi P, Idelsohn SR (2014) P1/P0+ elements for incompressible flows with discontinuous material properties. Comput Meth Appl Mech Eng 271:185–209

  33. Patankar NA, Joseph DD (2001) Lagrangian numerical simulation of particulate flows. Int J Multiphase Flow 27(10):1685–1706

    Article  MATH  Google Scholar 

  34. Radovitzky R, Ortiz M (1998) Lagrangian finite element analysis of newtonian fluid flows. Int J Numer Meth Eng 43:607–619

  35. Ramaswamy B, Kawahara M (1986) Lagrangian finite element analysis applied to viscous free surface fluid flow. Int J Numer Meth Fluids 7:953–984

  36. Wriggers P (2008) Non linear finite element methods. Springer, Berlin

    Google Scholar 

  37. Tezduyar TE (2001) Finite elements for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130

    Article  MATH  Google Scholar 

  38. Zhang DZ, Zou Q, VanderHeyden WB, Ma X (2008) Material point method applied to multiphase flows. J Comput Phys 227(6):3159–3173

    Article  MATH  MathSciNet  Google Scholar 

  39. Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method. Vol. 1 The basis, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  40. Zienkiewicz OC, Taylor RL (2005) The finite element method. Vol. 2 Solid and structural mechanics, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  41. Zienkiewicz OC, Taylor RL, Nithiarasu P (2005) The finite element method. Vol. 3 Fluid dynamics, 6th edn. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Advanced Grant project SAFECON of the European Research Council (ERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Oñate.

Appendix: Linearization of the momentum equations with respect to the nodal velocities

Appendix: Linearization of the momentum equations with respect to the nodal velocities

Using the expression of \({}^{n+1}\bar{{\mathbf {r}}}_m\) of Eq. (62) and neglecting the changes of the external vector \({}^{n+1}\bar{{\mathbf {f}}}_m\) with the velocity (accounting for these changes is possible and will lead to additional terms in the tangent matrix), we can write

$$\begin{aligned}&\delta _{\bar{v}} {}^{n+1} \bar{{\mathbf {r}}}_m = \frac{1}{\Delta t}{{\mathbf {M}}}_v d \bar{{\mathbf {v}}}\nonumber \\&\quad + \int _{{}^{n}V} \Big \{ {{\mathbf {B}}}^T \Big [\delta _{\bar{v}}\left\{ \mathbf S ^{\prime } \right\} \left( \delta _{\bar{v}} J\left\{ {{\mathbf {C}}}^{-1}\right\} + {J} \delta _{\bar{v}} \left\{ {{\mathbf {C}}}^{-1}\right\} \right) p \nonumber \\&\quad + J \left\{ {{\mathbf {C}}}^{-1}\right\} \delta _{\bar{v}}p\Big ]+ \delta _{\bar{v}} {{\mathbf {B}}}^T \left\{ \mathbf S ^{\prime } \right\} \Big \}d{~}^{n} V \end{aligned}$$
(102)

Introducing Eqs. (55) and (59) into (102) gives after some algebra [4, 5, 36]

$$\begin{aligned}&\delta _{\bar{v}} \left\{ \mathbf S ' \right\} = [{\varvec{\mathcal {C}}}]\delta _{\bar{v}} \left\{ \dot{{\mathbf {E}}}\right\} = [{\varvec{\mathcal {C}}}] {{\mathbf {B}}} d \bar{{\mathbf {v}}}\end{aligned}$$
(103)
$$\begin{aligned}&\delta _{\bar{v}} J \left\{ {{\mathbf {C}}}^{-1}\right\} = J {{\mathbf {C}}}^{-1} \otimes {{\mathbf {C}}}^{-1} \delta _{\bar{v}} \left\{ {{\mathbf {E}}}\right\} = J \Delta t{{\mathbf {C}}}^{-1} \otimes {{\mathbf {C}}}^{-1} {{\mathbf {B}}} d \bar{{\mathbf {v}}}\end{aligned}$$
(104)
$$\begin{aligned}&J \delta _{\bar{v}} \left\{ {{\mathbf {C}}}^{-1}\right\} = - 2 J {\varvec{\mathcal {I}}} \delta _{\bar{v}} \left\{ {{\mathbf {E}}}\right\} = -2 J \Delta t {\varvec{\mathcal {I}}} {{\mathbf {B}}} d \bar{{\mathbf {v}}} \end{aligned}$$
(105)

where

$$\begin{aligned} {\varvec{\mathcal {I}}}_{ijkl}= \frac{1}{2} \left[ ({{\mathbf {C}}}^{-1})_{ik} ({{\mathbf {C}}}^{-1})_{jl}- ({{\mathbf {C}}}^{-1})_{il}({{\mathbf {C}}}^{-1})_{jk}\right] \end{aligned}$$
(106)

It can be shown that tensor \({\varvec{\mathcal {I}}}\) is symmetric [4, 5].

On the other hand,

$$\begin{aligned} \delta _{\bar{v}} {{\mathbf {B}}}^T \left\{ {{\mathbf {S}}}' \right\} = \Delta t {{\mathbf {G}}}^T \hat{{\mathbf {S}}}'{{\mathbf {G}}} d \bar{{\mathbf {v}}} \end{aligned}$$
(107a)

with

$$\begin{aligned} \begin{array}{lll} {{\mathbf {G}}}=\left[ \begin{array}{lll}\bar{{\mathbf {G}}} &{} \quad \bar{{\mathbf {0}}} &{} \quad \bar{{\mathbf {0}}}\\ \bar{{\mathbf {0}}} &{}\quad \bar{{\mathbf {G}}}&{}\quad \bar{{\mathbf {0}}}\\ \bar{{\mathbf {0}}} &{} \quad \bar{{\mathbf {0}}}&{} \quad \bar{{\mathbf {G}}} \end{array}\right] \, ,\, \\ \bar{{\mathbf {G}}} = \left[ \begin{array}{llllllll} {}_nN^v_{1,1} &{}\quad 0&{}\quad 0&{} \quad {}_nN^v_{2,1}&{}\quad 0&{}\quad 0&{} \quad \cdots &{} \quad {}_nN^v_{n,1}\\ {}_nN^v_{1,2} &{}\quad 0&{}\quad 0&{}\quad {}_nN^v_{2,2}&{}\quad 0&{}\quad 0&{} \quad \cdots &{} \quad {}_nN^v_{n,2}\\ {}_nN^v_{1,3} &{}\quad 0&{}\quad 0&{} \quad {}_nN^v_{2,3}&{}\quad 0&{}\quad 0&{} \quad \cdots &{} \quad {}_nN^v_{n,3} \end{array}\right] \\ \hat{{\mathbf {S}}}^{\prime } = \left[ \begin{array}{lll} {{\mathbf {S}}}^{\prime } &{} \quad {{\mathbf {0}}} &{} \quad {{\mathbf {0}}}\\ {{\mathbf {0}}} &{} \quad {{\mathbf {S}}}^{\prime }&{} \quad {{\mathbf {0}}}\\ {{\mathbf {0}}} &{} \quad {{\mathbf {0}}}&{} \quad {{\mathbf {S}}}^{\prime } \end{array}\right] , \, {{\mathbf {0}}} = \left[ \begin{array}{lll} 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0\\ 0&{}\quad 0&{}\quad 0 \end{array}\right] ,\, \bar{{\mathbf {0}}} = \left\{ \begin{array}{l} 0\\ 0\\ 0 \end{array}\right\} \end{array} \nonumber \\ \end{aligned}$$
(107b)

with \({}_nN^v_{i,j}\) defined in Eq. (58b).

In the derivation of Eqs. (104), (105) and (107a) we have assumed that \( d(\Delta u_{i})= du_{i} =\Delta t ~d ({}^{n+\alpha }v_{i}) = \Delta t ~dv_{i}\). This relationship follows from Eq. (60a).

Substituting Eqs. (103)–(105) and (107a) and the interpolation for the pressure (Eq. (53)) into (102) yields the linearized form of the residual vector of the discretized momentum equations as

$$\begin{aligned} \delta _v {}^{n+1}\bar{{\mathbf {r}}}_m&= \frac{1}{\Delta t}{{\mathbf {M}}}_v d \bar{{\mathbf {v}}} \nonumber \\&\quad + \left\{ \int _{{}^{n}V}\left[ {{\mathbf {B}}}^T [{\varvec{\mathcal {C}}}_T] {{\mathbf {B}}}+ {{\mathbf {G}}}^T \hat{{\mathbf {S}}}{{\mathbf {G}}}\right] d {~}^{n}V \right\} d \bar{{\mathbf {v}}} \nonumber \\&\quad +\left\{ \int _{{}^{n}V} {{\mathbf {B}}}^T \left\{ {{\mathbf {C}}}^{-1}\right\} {{\mathbf {N}}}_p J d {~}^{n}V \right\} {\delta }_{\bar{v}}^{n+1}\bar{{\mathbf {p}}}\nonumber \\&= \left( \frac{1}{\Delta t}{{\mathbf {M}}}_v + {{\mathbf {K}}}_c + {{\mathbf {K}}}_\sigma \right) d \bar{{\mathbf {v}}}+ {{\mathbf {Q}}} {\delta }_{\bar{v}}^{n+1}\bar{{\mathbf {p}}} \end{aligned}$$
(108)

where matrices \({{\mathbf {M}}}_v\) and \({{\mathbf {Q}}}\) were given in Eq. (67) and \({{\mathbf {K}}}_c\) and \({{\mathbf {K}}}_\sigma \) are the constitutive and initial stress matrices, respectively. The expression of these matrices is

$$\begin{aligned} {{\mathbf {K}}}_c = \!\!\int _{{}^{n}V}{{\mathbf {B}}}^T [{\varvec{\mathcal {C}}}_T] {{\mathbf {B}}} d {~}^{n}V ,\, {{\mathbf {K}}}_\sigma =\!\!\int _{{}^{n}V}{{\mathbf {G}}}^T \hat{{\mathbf {S}}}' {{\mathbf {G}}}d {~}^{n}V \end{aligned}$$
(109)

The tangent constitutive tensor \({\varvec{\mathcal {C}}}_T\) is deduced from Eqs. (102), (103)–(105) as

$$\begin{aligned} {\varvec{\mathcal {C}}}_T = {\varvec{\mathcal {C}}} + J \Delta t p ({{\mathbf {C}}}^{-1}\otimes {{\mathbf {C}}}^{-1} - 2 {\varvec{\mathcal {I}}}) \end{aligned}$$
(110)

It is straightforward to show that tensor \({\varvec{\mathcal {C}}}_T\) is symmetric.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oñate, E., Carbonell, J.M. Updated lagrangian mixed finite element formulation for quasi and fully incompressible fluids. Comput Mech 54, 1583–1596 (2014). https://doi.org/10.1007/s00466-014-1078-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-014-1078-1

Keywords

Navigation