Skip to main content
Log in

An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 1: Rods

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A fully conserving algorithm is developed in this paper for the integration of the equations of motion in nonlinear rod dynamics. The starting point is a re-parameterization of the rotation field in terms of the so-called Rodrigues rotation vector, which results in an extremely simple update of the rotational variables. The weak form is constructed with a non-orthogonal projection corresponding to the application of the virtual power theorem. Together with an appropriate time-collocation, it ensures exact conservation of momentum and total energy in the absence of external forces. Appealing is the fact that nonlinear hyperelastic materials (and not only materials with quadratic potentials) are permitted without any prejudice on the conservation properties. Spatial discretization is performed via the finite element method and the performance of the scheme is assessed by means of several numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Argyris JH (1982). An excursion into large rotations. Comp Meth Appl Mech Eng 32: 85–155

    Article  MATH  MathSciNet  Google Scholar 

  2. Armero F and Petocz E (1998). Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems. Comp Meth Appl Mech Eng 158: 269–300

    Article  MATH  MathSciNet  Google Scholar 

  3. Bertram A (2005). Elasticity and plasticity of large deformations—an introduction. Springer, Berlin

    MATH  Google Scholar 

  4. Betsch P and Steinmann P (2001). Conservation properties of a time FE method—part II: time-stepping schemes for non-linear elastodynamics. Int J Numer Methods Eng 50: 1931–1955

    Article  MATH  MathSciNet  Google Scholar 

  5. Betsch P and Steinmann P (2002). Frame-indifferent beam finite elements based upon the geometrically-exact beam theory. Int J Numer Methods Eng 54: 1775–1788

    Article  MATH  MathSciNet  Google Scholar 

  6. Botasso CL, Bauchau OA and Choi J-Y (2002). An energy decaying scheme for nonlinear dynamics of shells. Comp Meth Appl Mech Eng 191: 3099–3121

    Article  Google Scholar 

  7. Campello EMB, Pimenta PM, Wriggers P (2008) An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells. Comput Mech (submitted)

  8. Chawla V and Laursen TA (1998). Energy consistent algorithms for frictional contact problems. Int J Numer Methods Eng 42: 799–827

    Article  MATH  MathSciNet  Google Scholar 

  9. Chung J and Hulbert GN (1993). A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J Appl Mech 60: 371–375

    Article  MATH  MathSciNet  Google Scholar 

  10. Ciarlet PJ (1988). Mathematical Elasticity, vol 1. North-Holland, Amsterdam

    Book  Google Scholar 

  11. Crisfield MA and Jelenić G (1999). Objectivity of strain measures in the geometrically-exact three-dimensional beam theory and its finite element implementation. Proc R Soc Lond 455: 1125–1147

    Article  MATH  Google Scholar 

  12. Dasambiagio ER, Campello EMB and Pimenta PM (2007). Multi-parameter analysis of rods considering cross-sectional in-plane changes and out-of-plane warping. In: de Sá, JC (eds) Proceedings of the CMNE 2007/ XXVIII CILAMCE. Oporto, Portugal

    Google Scholar 

  13. Gonzalez O (2000). Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comp Meth Appl Mech Eng 190: 1763–1783

    Article  MATH  Google Scholar 

  14. Hilber HM, Hughes TJR and Taylor RL (1977). Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Eng Struct Dyn 5: 283–292

    Article  Google Scholar 

  15. Hughes TJR, Caughy TK and Liu WK (1978). Finite element methods for nonlinear elastodynamics which conserve energy. J Appl Mech 45: 366–370

    MATH  Google Scholar 

  16. Ibrahimbegović A and Taylor RL (2002). On the role of frame-invariance in structural mechanics models at finite rotations. Comp Meth Appl Mech Eng 191: 5159–5176

    Article  MATH  Google Scholar 

  17. Jelenić G and Crisfield MA (1999). Geometrically-exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comp Meth Appl Mech Eng 171: 141–171

    Article  MATH  Google Scholar 

  18. Kuhl D and Ramm E (1996). Constraint energy-momentum algorithm and its application to nonlinear dynamics of shells. Comp Meth Appl Mech Eng 136: 293–315

    Article  MATH  Google Scholar 

  19. Kuhl D and Ramm E (1999). Generalized energy-momentum method for nonlinear adaptive shell dynamics. Comp Meth Appl Mech Eng 178: 343–366

    Article  MATH  MathSciNet  Google Scholar 

  20. Laursen TA and Meng XN (2001). A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics. Comp Meth Appl Mech Eng 190: 6309–6322

    Article  MATH  MathSciNet  Google Scholar 

  21. Newmark NN (1959). A method of computation for structural dynamics. J Eng Mech Div 85: 67–94

    Google Scholar 

  22. Pimenta PM and Yojo T (1993). Geometrically-exact analysis of spatial frames. Appl Mech Reviews, ASME 46(11): 118–128

    Google Scholar 

  23. Pimenta PM, Campello EMB (2001) Geometrically nonlinear analysis of thin-walled space frames. Proceedings of the European conference on computational mechanics 2001, Cracow, Poland

  24. Pimenta PM and Campello EMB (2003). A fully nonlinear multi-parameter rod model incorporating general cross-sectional in-plane changes and out-of-plane warping. Lat Am J Solids Struct 1: 119–140

    Google Scholar 

  25. Pimenta PM and Campello EMB (2005). Finite rotation parameterizations for the nonlinear static and dynamic analysis of shells. In: Ramm, E, Wall, WA, Bletzinger, K-U and Bischoff, M (eds) Proceedings of the 5th International Conference on Computation of Shell and Spatial Structures. Salzburg, Austria

    Google Scholar 

  26. Rodrigues O (1840) Des lois géométriques qui régissent les déplacements d’un système solid dans l’espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. Journal de Mathématiques Pures et Appliquées, pp 380–440

  27. Romero I and Armero F (2002). An objective finite element approximation of the kinematics of geometrically-exact rods and its use in the formulation of an energy-momentum conserving scheme in dynamics. Int J Numer Methods Eng 54: 1683–1716

    Article  MATH  MathSciNet  Google Scholar 

  28. Sansour C, Wriggers P and Sansour J (1997). Nonlinear dynamics of shells: theory, finite element formulation and integration schemes. Nonlinear Dyn 13: 279–305

    Article  MATH  MathSciNet  Google Scholar 

  29. Sansour C, Wriggers P and Sansour J (2004). On the design of energy-momentum integration schemes for arbitrary continuum formulations. Applications to classical and chaotic motion of shells. Int J Numer Methods Eng 60: 2419–2440

    Article  MATH  MathSciNet  Google Scholar 

  30. Simo JC and Vu-Quoc L (1988). On the dynamics in space of rods undergoing large motions—a geometrically exact approach. Comp Meth Appl Mech Eng 66: 125–161

    Article  MATH  MathSciNet  Google Scholar 

  31. Simo JC and Tarnow N (1992). The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z. angew. Math Phys 43: 757–792

    Article  MATH  MathSciNet  Google Scholar 

  32. Simo JC and Tarnow N (1994). A new energy and momentum conserving algorithm for the nonlinear dynamics of shells. Int J Numer Methods Eng 37: 2527–2549

    Article  MATH  MathSciNet  Google Scholar 

  33. Simo JC, Tarnow N and Doblare N (1995). Exact energy-momentum algorithms for the dynamics of nonlinear rods. Int J Numer Methods Eng 38: 1431–1474

    Article  MATH  MathSciNet  Google Scholar 

  34. Truesdell C (1965). Continuum Mechanics, vol 1–4. Gordon and Breach, New York

    Google Scholar 

  35. Wood WL, Bossak M and Zienkiewicz OC (1981). An alpha modification of Newmark’s method. Int J Numer Methods Eng 15: 1562–1566

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Pimenta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pimenta, P.M., Campello, E.M.B. & Wriggers, P. An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 1: Rods. Comput Mech 42, 715–732 (2008). https://doi.org/10.1007/s00466-008-0271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0271-5

Keywords

Navigation