Skip to main content
Log in

Application of acetyl-CoA acetyltransferase (AtoAD) in Escherichia coli to increase 3-hydroxyvalerate fraction in poly(3-hydroxybutyrate-co-3-hydroxyvalerate)

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Polyhydroxyalkanoate (PHA) is a family of biodegradable polymers, and incorporation of different monomers can alter its physical properties. To produce the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (P(3HB-co-3HV)) containing a high level of 3-hydroxyvalerate (3HV) by altering acetyl-CoA pool levels, we overexpressed an acetyl-CoA acetyltransferase (atoAD) in an engineered E. coli strain, YH090, carrying PHA synthetic genes bktB, phaB, and phaC. It was found that, with introduction of atoAD and with propionate as a co-substrate, 3HV fraction in PHA was increased up to 7.3-fold higher than a strain without atoAD expressed in trans (67.9 mol%). By the analysis of CoA pool concentrations in vivo and in vitro using HPLC and LC-MS, overexpression of AtoAD was shown to decrease the amount of acetyl-CoA and increase the propionyl-CoA/acetyl-CoA ratio, ultimately resulting in an increased 3HV fraction in PHA. Finally, synthesis of P(3HB-co-3HV) containing 57.9 mol% of 3HV was achieved by fed-batch fermentation of YJ101 with propionate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Berezina N (2012) Enhancing the 3-hydroxyvalerate component in bioplastic PHBV production by Cupriavidus necator. Biotechnol J 7(2):304–309 doi. DOI:10.1002/biot.201100191

    Article  CAS  Google Scholar 

  2. Braunegg G, Sonnleitner B, Lafferty RM (1978) Rapid Gas-chromatographic method for determination of poly-beta-hydroxybutyric acid in microbial biomass. Eur J. Appl Microbiol Biotechnol 6(1):29–37

    Article  CAS  Google Scholar 

  3. Canelas AB, Ras C, ten Pierick A, van Dam JC, Heijnen JJ, Van Gulik WM (2008) Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4(3):226–239. doi:10.1007/s11306-008-0116-4

    Article  CAS  Google Scholar 

  4. Canelas AB, ten Pierick A, Ras C, Seifar RM, van Dam JC, van Gulik WM, Heijnen JJ (2009) Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Anal Chem 81(17):7379–7389. doi:10.1021/ac900999t

    Article  CAS  Google Scholar 

  5. Choi MH, Lee HJ, Rho JK, Yoon SC, Nam JD, Lim D, Lenz RW (2003) Biosynthesis and local sequence specific degradation of poly(3-hydroxyvalerate-co-4-hydroxybutyrate) in Hydrogenophaga pseudoflava. Biomacromolecules 4(1):38–45. doi:10.1021/bm025596s

    Article  CAS  Google Scholar 

  6. Huijberts GN, Eggink G, de Waard P, Huisman GW, Witholt B (1992) Pseudomonas putida KT2442 cultivated on glucose accumulates poly(3-hydroxyalkanoates) consisting of saturated and unsaturated monomers. Appl Environ Microbiol 58(2):536–544

    CAS  Google Scholar 

  7. Janssen HJ, Steinbuchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuel 7(1):7 doi:10.1186/1754-6834-7-7

    Article  Google Scholar 

  8. Jeon JM, Brigham CJ, Kim YH, Kim HJ, Yi DH, Kim H, Rha C, Sinskey AJ, Yang YH (2014) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha. Appl Microbiol Biotechnol 98(12):5461–5469. doi:10.1007/s00253-014-5617-7

    Article  CAS  Google Scholar 

  9. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619. doi:10.1016/j.procbio.2004.01.053

    Article  CAS  Google Scholar 

  10. Khanna S, Srivastava AK (2007) Production of poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) having a high hydroxyvalerate content with valeric acid feeding. J Ind Microbiol Biotechnol 34(6):457–461. doi:10.1007/s10295-007-0207-7

    Article  CAS  Google Scholar 

  11. Kim S, Lee DY, Wohlgemuth G, Park HS, Fiehn O, Kim KH (2013) Evaluation and Optimization of Metabolome Sample Preparation Methods for Saccharomyces cerevisiae. Anal Chem 85(4):2169–2176. doi:10.1021/ac302881e

    Article  CAS  Google Scholar 

  12. Koller M, Salerno A, Dias M, Reiterer A, Braunegg G (2010) Modern Biotechnological Polymer Synthesis: A Review. Food Technol. Biotech 48(3):255–269

    CAS  Google Scholar 

  13. Le Meur S, Zinn M, Egli T, Thony-Meyer L, Ren Q (2013) Poly(4-hydroxybutyrate) (P4HB) production in recombinant Escherichia coli: P4HB synthesis is uncoupled with cell growth. Microb Cell Fact 12:123. doi:10.1186/1475-2859-12-123

    Article  Google Scholar 

  14. Liu Q, Luo G, Zhou XR, Chen GQ (2011) Biosynthesis of poly(3-hydroxydecanoate) and 3-hydroxydodecanoate dominating polyhydroxyalkanoates by beta-oxidation pathway inhibited Pseudomonas putida. Metabol Eng 13(1):11–17 doi:10.1016/j.ymben.2010.10.004

    Article  CAS  Google Scholar 

  15. Liu T, Khosla C (2010) Genetic engineering of Escherichia coli for biofuel production. Ann Rev Genet 44:53–69. doi:10.1146/annurev-genet-102209-163440

    Article  CAS  Google Scholar 

  16. Liu XW, Wang HH, Chen JY, Li XT, Chen GQ (2009) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by recombinant Escherichia coli harboring propionyl-CoA synthase gene (prpE) or propionate permease gene (prpP). Biochem Eng J 43(1):72–77. doi:10.1016/j.bej.2008.09.001

    Article  CAS  Google Scholar 

  17. Lu JN, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanoates). Polym Rev 49(3):226–248. doi:10.1080/15583720903048243

    Article  CAS  Google Scholar 

  18. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53

    CAS  Google Scholar 

  19. McCool GJ, Cannon MC (1999) Polyhydroxyalkanoate inclusion body-associated proteins and coding region in Bacillus megaterium. J Bacteriol 181(2):585–592

    CAS  Google Scholar 

  20. Meng DC, Shi ZY, Wu LP, Zhou Q, Wu Q, Chen JC, Chen GQ (2012) Production and characterization of poly(3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway. Metabol Eng 14(4):317–324 doi:10.1016/j.ymben.2012.04.003

    Article  CAS  Google Scholar 

  21. Rai R, Yunos DM, Boccaccini AR, Knowles JC, Barker IA, Howdle SM, Tredwell GD, Keshavarz T, Roy I (2011) Poly-3-hydroxyoctanoate P(3HO), a medium chain length polyhydroxyalkanoate homopolymer from Pseudomonas mendocina. Biomacromolecules 12(6):2126–2136. doi:10.1021/bm2001999

    Article  CAS  Google Scholar 

  22. Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8(8):578–592. doi:10.1038/nrmicro2354

    Article  CAS  Google Scholar 

  23. Rodriguez GM, Tashiro Y, Atsumi S (2014) Expanding ester biosynthesis in Escherichia coli. Nat Chem Biol 10(4):259–265. doi:10.1038/nchembio.1476

    Article  CAS  Google Scholar 

  24. Shah AA, Hasan F, Hameed A, Ahmed S (2008) Biological degradation of plastics: a comprehensive review. Biotechnol Adv 26(3):246–265. doi:10.1016/j.biotechadv.2007.12.005

    Article  CAS  Google Scholar 

  25. Silva LF, Gomez JGC, Oliveira MS, Torres BB (2000) Propionic acid metabolism and poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV) production by Burkholderia sp. J Biotechnol 76(2–3):165–174 doi. Doi:10.1016/S0168-1656(99)00184-4

    Article  CAS  Google Scholar 

  26. Sramek SJ, Frerman FE (1975) Escherichia coli coenzyme A-transferase: kinetics, catalytic pathway and structure. Arch Biochem Biophys 171(1):27–35

    Article  CAS  Google Scholar 

  27. Valentin HE, Berger PA, Gruys KJ, Rodrigues MFD, Steinbuchel A, Tran R, Asrar J (1999) Biosynthesis and characterization of poly(3-hydroxy-4-pentenoic acid). Macromolecules 32(22):7389–7395. doi:10.1021/Ma9905167

    Article  CAS  Google Scholar 

  28. Verlinden RA, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102(6):1437–1449. doi:10.1111/j.1365-2672.2007.03335.x

    Article  CAS  Google Scholar 

  29. Wang Y, Wu H, Jiang XR, Chen GQ (2014) Engineering Escherichia coli for enhanced production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in larger cellular space. Metabol Eng 25:183–193 doi:10.1016/j.ymben.2014.07.010

    Article  Google Scholar 

  30. Yang JE, Choi YJ, Lee SJ, Kang KH, Lee H, Oh YH, Lee SH, Park SJ, Lee SY (2014) Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol 98(1):95–104. doi:10.1007/s00253-013-5285-z

    Article  CAS  Google Scholar 

  31. Yang YH, Brigham C, Willis L, Rha C, Sinskey A (2011) Improved detergent-based recovery of polyhydroxyalkanoates (PHAs). Biotechnol Lett 33(5):937–942

    Article  CAS  Google Scholar 

  32. Yang YH, Brigham C, Budde CF, Boccazzi P, Willis LB, Hassan MA, Yusof ZAM, Rha C, Sinskey AJ (2010) Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Appl Microbiol Biot 87(6):2037–2045. doi:10.1007/s00253-010-2699-8

    Article  CAS  Google Scholar 

  33. Yang YH, Brigham CJ, Song E, Jeon JM, Rha CK, Sinskey AJ (2012) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing a predominant amount of 3-hydroxyvalerate by engineered Escherichia coli expressing propionate-CoA transferase. J Appl Microbiol 113(4):815–823. doi:10.1111/j.1365-2672.2012.05391.x

    Article  CAS  Google Scholar 

  34. Yang YH, Jeon JM, Yi DH, Kim JH, Seo HM, Rha C, Sinskey AJ, Brigham CJ (2015) Application of a non-halogenated solvent, methyl ethyl ketone (MEK) for recovery of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(HB-co-HV)] from bacterial cells. Biotechnol Bioproc Eng 20(2):291–297 doi:10.1007/s12257-014-0546-y

    Article  CAS  Google Scholar 

  35. York GM, Lupberger J, Tian J, Lawrence AG, Stubbe J, Sinskey AJ (2003) Ralstonia eutropha H16 encodes two and possibly three intracellular Poly[D-(-)-3-hydroxybutyrate] depolymerase genes. J Bacteriol 185(13):3788–3794

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF-2016R1D1A1B03932301 and NRF-2015M1A5A1037196). This paper was written as part of Konkuk University’s research support program for its faculty on sabbatical leave in 2016. Consulting service from the Microbial Carbohydrate Resource Bank (MCRB, Seoul, Korea) was kindly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Hun Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 237 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, JM., Kim, HJ., Bhatia, S. et al. Application of acetyl-CoA acetyltransferase (AtoAD) in Escherichia coli to increase 3-hydroxyvalerate fraction in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Bioprocess Biosyst Eng 40, 781–789 (2017). https://doi.org/10.1007/s00449-017-1743-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-017-1743-9

Keywords

Navigation