Skip to main content

Advertisement

Log in

Optimal production of 4-deoxy-l-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Algae are considered as third-generation biomass, and alginate is the main component of brown macroalgae. Alginate can be enzymatically depolymerized by alginate lyases into uronate monomers, such as mannuronic acid and guluronic acid, which are further nonenzymatically converted to 4-deoxy-l-erythro-5-hexoseulose uronic acid (DEH). We have optimized an enzymatic saccharification process using two recombinant alginate lyases, endo-type Alg7D and exo-type Alg17C, for the efficient production of DEH from alginate. When comparing the sequential and simultaneous additions of Alg7D and Alg17C, it was found that the final yield of DEH was significantly higher when the enzymes were added sequentially. The progress of saccharification reactions and production of DEH were verified by thin layer chromatography and gas chromatography–mass spectrometry, respectively. Our results showed that the two recombinant enzymes could be exploited for the efficient production of DEH that is the key substrate for producing biofuels from brown macro algal biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Food and Agriculture Organization of United Nations (2009) How to Feed the World in 2050

  2. Jung YH, Kim S, Yang TH, Lee HJ, Seung D, Park Y-C, Seo J-H, Choi I-G, Kim KH (2012) Aqueous ammonia pretreatment, saccharification, and fermentation evaluation of oil palm fronds for ethanol production. Bioprocess Biosyst Eng 35:1497–1503

    Article  CAS  Google Scholar 

  3. Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172

    Article  CAS  Google Scholar 

  4. Ramnani P, Chitarrari R, Tuohy K, Grant J, Hotchkiss S, Philp K, Campbell R, Gill C, Rowland I (2012) In vitro fermentation and prebiotic potential of novel low molecular weight polysaccharides derived from agar and alginate seaweeds. Anaerobe 18:1–6

    Article  CAS  Google Scholar 

  5. Fukuda H, Imura M, Kasahara H, Kirimura K, Usami S (1987) Effects of the addition of laminaran on β-glucosidase production by Trichoderma viride. J Ferment Technol 65:91–93

    Article  CAS  Google Scholar 

  6. Ghose TK, Roychoudhury PK, Ghosh P (1984) Simultaneous saccharification and fermentation (SSF) of lignocellulosics to ethanol under vacuum cycling and step feeding. Biotechnol Bioeng 26:377–381

    Article  CAS  Google Scholar 

  7. Andriamanantoanina H, Rinaudo M (2010) Characterization of the alginates from five Madagascan brown algae. Carbohydr Polym 82:555–560

    Article  CAS  Google Scholar 

  8. Gacesa P (1988) Alginates. Carbohydr Polym 8:161–182

    Article  CAS  Google Scholar 

  9. Okuda K, Oka K, Onda A, Kajiyoshi K, Hiraoka M, Yanagisawa K (2008) Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. J Chem Technol Biotechnol 83:836–841

    Article  CAS  Google Scholar 

  10. Aida TM, Yamagata T, Watanabe M, Smith Jr RL (2010) Depolymerization of sodium alginate under hydrothermal conditions. Carbohydr Polym 80:296–302

    Article  CAS  Google Scholar 

  11. Haug A, Larsen B, Smidsrod O (1966) A study of the constitution of alginic acid by partial acid hydrolysis. Acta Chem Scand 20:183–190

    Article  CAS  Google Scholar 

  12. Miyake O, Hashimoto W, Murata K (2003) An exotype alginate lyase in Sphingomonas sp. Al: overexpression in Escherichia coli, purification, and characterization of alginate lyase IV (A1-IV). Protein Expr Purif 29:33–41

    Article  CAS  Google Scholar 

  13. Kersters K, De Ley J (1968) The occurrence of the Entner–Doudoroff pathway in bacteria. Antonie Van Leeuwenhoek 34:393–408

    Article  CAS  Google Scholar 

  14. Takeda H, Yoneyama F, Kawai S, Hashimoto W, Murata K (2011) Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy Environ Sci 4:2575–2581

    Article  CAS  Google Scholar 

  15. Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y (2012) An engineered microbial platform for direct biofuel production from brown macroalgae. Science 335:308–313

    Article  CAS  Google Scholar 

  16. Enguist-Newman M, Faust AME, Bravo DD, Santos CNS, Raisner RM, Hanel A, Sarvabhowman P, Le C, Regitsky DD, Cooper SR, Peereboom L, Clark A, Martinez Y, Goldsmith J, Cho MY, Donohoue PD, Luo L, Lamberson B, Tamrakar P, Kim EJ, Villari JL, Gill A, Tripathi SA, Karamchedu P, Paredes CJ, Rajgarhia V, Kotlar HK, Bailey RB, Miller DJ, Ohler NL, Swimmer C, Yoshikuni Y (2014) Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature 505:239–243

    Article  Google Scholar 

  17. Kim HT, Ko H-J, Kim N, Kim D, Lee D, Choi I-G, Woo HC, Kim MD, Kim KH (2012) Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans. Biotechnol Lett 34:1087–1092

    Article  CAS  Google Scholar 

  18. Kim HT, Chung JH, Wang D, Lee J, Woo HC, Choi I-G, Kim KH (2012) Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Appl Microbiol Biotechnol 93:2233–2239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Ministry of Oceans and Fisheries (20131039449) and the Advanced Biomass R&D Center of Korea (2011-0031353) funded the Ministry of Science, ICT & Future Planning. Facility support by the Institute of Biomedical Science and Food Safety at Korea University Food Safety Hall is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Heon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D.M., Kim, H.T., Yun, E.J. et al. Optimal production of 4-deoxy-l-erythro-5-hexoseulose uronic acid from alginate for brown macro algae saccharification by combining endo- and exo-type alginate lyases. Bioprocess Biosyst Eng 37, 2105–2111 (2014). https://doi.org/10.1007/s00449-014-1188-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1188-3

Keywords

Navigation