Skip to main content

Advertisement

Log in

Study of hydrodynamic characteristics in tubular photobioreactors

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this work, the hydrodynamic characteristics in tubular photobioreactors with a series of helical static mixers built-in were numerically investigated using computational fluid dynamics (CFD). The influences of height and screw pitch of the helical static mixer and fluid inlet velocity on the cell trajectories, swirl numbers and energy consumption were examined. In order to verify the actual results for cultivation of microalgae, cultivation experiments of freshwater Chlorella sp. were carried out in photobioreactor with and without helical static mixer built-in at the same time. It was shown that with built-in helical static mixer, the mixing of fluid could be intensified, and the light/dark cycle could also be achieved which is of benefit for the growth of microalgae. The biomass productivity of Chlorella sp. in tubular photobioreactor with helical static mixer built-in was 37.26 % higher than that in the photobioreactor without helical static mixer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

C 1, C 2 :

Coefficient in \( k - \varepsilon \) equation

C D :

Drag force coefficient

d :

Static mixer thinness (m)

d p :

Particle diameter (m)

D :

Diameter of tubular photobioreactor (m)

D m :

Molecular diffusivity (m2/s)

F D :

Drag force (N)

h :

Height of the static mixer (m)

k :

Turbulent kinetic energy (m2/s2)

L :

Length of tubular photobioreactor (m)

P :

Pressure (Pa m3/kg)

R :

Radial coordinate (m)

Rep :

Reynolds number

s :

Screw pitch (m)

S :

Source term

Sn:

Swirl number

t :

Time (s)

u :

Liquid velocity (m/s)

u p :

Particle velocity (m/s)

v :

Inlet velocity (m/s)

x :

x coordinate (m)

y :

y coordinate (m)

z :

z coordinate (m)

\( \varepsilon \) :

Turbulent energy dissipation rate (W/kg)

ρ :

Density (kg/m3)

\( \sigma_{k} ,\sigma_{\varepsilon } \) :

Coefficient in \( k - \varepsilon \) equation

References

  1. Pohl P, Kohlhase M, Martin M (1988) In: Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds) Algal biotechnology. Elsevier, New York

    Google Scholar 

  2. Richmond A, Boussiba S, Vonshak A, Kopel R (1993) A new tubular reactor for mass production of microalgae outdoors. J Appl Phycol 5:327–332

    Article  Google Scholar 

  3. Tredici MR, Zittelli GC (1998) Efficiency of sunlight utilization: tubular versus flat photobioreactors. Biotechnol Bioeng 57:187–197

    Article  CAS  Google Scholar 

  4. Morita M, Watanable Y, Saiki H (2000) Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol Bioeng 69:693–698

    Article  CAS  Google Scholar 

  5. Molina E, Fernandez J, AcienF G, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131

    Article  CAS  Google Scholar 

  6. Ugwu CU, Ogbonna JC, Tanaka H (2005) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607

    Google Scholar 

  7. Ugwu CU, Ogbonna JC, Tanaka H (2005) Characterization of light utilization and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers. Process Biochem 40:3406–3411

    Article  CAS  Google Scholar 

  8. Tredici MR, Carlozzi P, Zittelli CG, Materassi R (1991) A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresour Technol 38:153–159

    Article  Google Scholar 

  9. Zhang K, Kurano N, Miyachi S (2002) Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioprocess Biosyst Eng 25:97–101

    Article  CAS  Google Scholar 

  10. Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH (2002) A pneumatically agitated flat-panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium. Int J Hydrogen Energ 27:1331–1338

    Article  CAS  Google Scholar 

  11. Choi SL, Suh IS, Lee CG (2003) Lumostatic operation of bubble column photobioreactors for Haematococcus pluvialis cultures using a specific light uptake rate as a control parameter. Enzyme Microb Tech 33:403–409

    Article  CAS  Google Scholar 

  12. Kaewpintong K, Shotipruk A, Powtongsook S, Pavasant P (2007) Photoautotrophic high-density cultivation of vegetative cells of Haematococcus pluvialis in airlift bioreactor. Bioresour Technol 98:288–295

    Article  CAS  Google Scholar 

  13. Grobbelaar JU (1994) Turbulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol 6:331–335

    Article  Google Scholar 

  14. Matthijs HCP, Balke H, VanHes UM, Kroon BMA, Mur LR, Binot RA (1996) Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol Bioeng 50:98–107

    Article  CAS  Google Scholar 

  15. Janssen M, Janssen M, de Winter M, Tramper J, Mur LR, Snel J, Wijffels RH (2000) Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles. J Biotechnol 78:123–137

    Article  CAS  Google Scholar 

  16. Janssen M, de Bresser L, Baijens T, Tramper J, Mur LR, Snel JFH, Wijffels RH (2000) Scale-up aspects of photobioreactors: effects of mixing-induced light/dark cycles. J Appl Phycol 12:225–237

    Article  CAS  Google Scholar 

  17. Janssen M, Slenders P, Tramper J, Mur LR, Wijffels RH (2001) Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme Microb Tech 29:298–305

    Article  CAS  Google Scholar 

  18. Degen J, Uebele A, Retze A, Schmid-Staiger U, Trosch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94

    Article  CAS  Google Scholar 

  19. Perner-Nochta I, Posten C (2007) Simulation of light intensity variation in photobioreactors. J Biotechnol 131:276–285

    Article  CAS  Google Scholar 

  20. Su ZF, Kang RJ, Shi SY, Cong W, Cai ZL (2010) Study on the destabilization mixing in the flat plate photobioreactor by means of CFD. Biomass Bioenerg 34:1879–1884

    Article  CAS  Google Scholar 

  21. Ugwu CU, Ogbonna JC, Tanaka H (2002) Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactor by installation of internal static mixers. Appl Microbiol Biotechnol 58:600–607

    Article  CAS  Google Scholar 

  22. Ugwu CU, Ogbonna JC, Tanaka H (2003) Design of static mixers for inclined tubular photobioreactors. J Appl Phycol 19:217–223

    Article  Google Scholar 

  23. Wu X, Merchuk JC (2001) A model integrating fluid dynamics in photosynthesis and photoinhibition processes. Chem Eng Sci 56:3527–3538

    Article  CAS  Google Scholar 

  24. Merchuk JC, Ronen M, Giris S, Aras S (1998) Light/dark cycles in the growth of the red microalga Porphyridium sp. Biotechnol Bioeng 59:705–713

    Article  CAS  Google Scholar 

  25. Vakili MH, Esfahany MN (2009) CFD analysis of turbulence in a baffled stirred tank, a three compartment model. Chem Eng Sci 64:351–362

    Article  CAS  Google Scholar 

  26. Luo HP, Al-Dahhan MH (2011) Verification and validation of CFD simulations for local flow dynamics in a draft tube airlift bioreactor. Chem Eng Sci 66:907–923

    Article  CAS  Google Scholar 

  27. Pruvost J, Legrand J, Legentilhomme P, Rosant JM (2004) Numerical investigation of bend and torus flows—Part II: flow simulation in torus reactor. Chem Eng Sci 59:3359–3370

    Article  CAS  Google Scholar 

  28. Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

    CAS  Google Scholar 

  29. Pruvost J, Legrand J, Legentilhomme P, Muller-Feuga A (2002) Simulation of microalgae growth in limiting light conditions: flow effect. AIChE J 48:1109–1120

    Article  CAS  Google Scholar 

  30. Muller-Feuga A, Pruvost J, Le Guedes R, Le Dean L, Legentilhomme P, Legrand J (2003) Swirling flow implementation in a photobioreactor for batch and continuous cultures of Porphyridium cruentum. Biotechnol Bioeng 84:544–551

    Article  CAS  Google Scholar 

  31. Camacho FGA, Gomez C, Sobczuk TM, Grima EM (2000) Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum. Process Biochem 35:1045–1050

    Article  CAS  Google Scholar 

  32. Carvalho APL, Meireles A, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Progr 22:1490–1506

    CAS  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate the support of the Knowledge Innovation Project of Chinese Academy of Sciences (KGCX2-YW-223-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Wu, X., Xue, S. et al. Study of hydrodynamic characteristics in tubular photobioreactors. Bioprocess Biosyst Eng 36, 143–150 (2013). https://doi.org/10.1007/s00449-012-0769-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0769-2

Keywords

Navigation