Skip to main content
Log in

The process of resurgence for Ischia Island (southern Italy) since 55 ka: the laccolith model and implications for eruption forecasting

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

This study provides an analysis of the evolution of resurgence from 55 ka for the active volcanic island of Ischia, southern Italy, using a laccolith model proposed in previous studies. This paper explores the uplift phases, eruptive behavior, and associated seismic activity of Ischia Island, which are important issues as the island has a high volcanic risk. Through an analysis of stress and strain over time for laccolith pressurization, it is shown that during resurgence, Ischia Island has undergone flexural uplift and progressive fracturing and faulting of the shallow crust (2 km thick), with an increase in the laccolith’s volume of at least 80 km3 and an average magma influx of 0.015 m3 s−1. Different elastic and viscoelastic mechanisms are used to evaluate the modes of stress relaxation due to this laccolith pressurization phase. Stress relaxation can occur through uplift and seismicity, without eruption, or with eruption. It is also shown that large eruptions should be expected only for long-term uplift of the central part of Ischia Island (the Mount Epomeo block). In contrast, the occurrence of small effusive and explosive eruptions should involve the peripheral areas of the resurgent block, and these are more likely to occur in the near future than are large events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acocella V, Funiciello R (1999) The interaction between regional and local tectonics during resurgent doming: the case of the island of Ischia, Italy. J Volcanol Geotherm Res 88:109–123

    Article  Google Scholar 

  • Acocella V, Funiciello R, Lombardi S (1997) Active tectonics and resurgence at Ischia Island (Southern Italy). Il Quaternario 10:427–432

    Google Scholar 

  • AGIP (1987) Geologia e geofisica del sistema geotermico dei Campi Flegrei, Technical report, Settore Esplor e Ric Geoterm-Metodol per l’Esplor Geotermica, San Donato Milanese Italy, pp 1–23

  • Anzidei M, Baldi P, Casula G, Galvani A, Mantovani E, Pesci A, Riguzzi F, Serpelloni E (2001) Insights into present-day crustal motion in the central Mediterranean area from GPS surveys. Geophys J Int 146:98–110

    Article  Google Scholar 

  • Barra D, Cinque A, Italiano A, Scorziello R (1993) Il pleistocene superiore marino di Ischia: paleoecologia e rapporti con l’evoluzione tettonica recente. Studi Geologici Camerti, Special 1992/1:231–243

    Google Scholar 

  • Battaglia M, Roberts C, Segall P (1999) Magma intrusion beneath Long Valley caldera confirmed by temporal changes in gravity. Science 285 no. 5436, pp 2119–2122

  • Battaglia M, Troise C, Obrizzo F, Pingue F, De Natale G (2006) Evidence for fluid migration as source of deformation at Campi Flegrei caldera (Italy). Geophys Res Lett 33:L01307. doi:10.1029/2005GL024904

    Article  Google Scholar 

  • Blake S (1981) Volcanism and the dynamics of open magma chambers. Nature 289:783–785

    Google Scholar 

  • Bonafede M (1991) Hot fluid migration: an efficient source of ground deformation; application to the 1982–1985 crisis at Campi Flegrei – Italy. J Volcanol Geotherm Res 48:187–198

    Article  Google Scholar 

  • Bruno PPG, De Alteriis G, Florio G (2002) The western undersea section of the Ischia volcanic complex (Italy, Tyrrhenian sea) inferred by marine geophysical data. Geophys Res Lett 29(57):1–4. doi:10.1029/2001GL013904

    Google Scholar 

  • Buchner G, Italiano A, Vita-Finizi C (1996) Recent uplift of Ischia, southern Italy. In: McGuire WJ, Jones AP, Neuberg J (eds) Volcano instability on the Earth and other planets. Geol Soc Spec Publ 110: 249–252

  • Byerlee JD (1968) Brittle–ductile transition in rocks. J Geophys Res 73:4741–4750

    Article  Google Scholar 

  • Byerlee JD (1978) Friction of rocks. Pure Appl Geophys 116:615–626

    Article  Google Scholar 

  • Carlino S, Cubellis E (2005) The potential causes of Mt. Epomeo flank failure, Ischia Island (Southern Italy). Geophys Res Abstr 7:04171

    Google Scholar 

  • Carlino S, Somma R (2010) Eruptive versus non-eriptive behaviour of large calderas: the example of Campi Flegrei caldera (southern Italy). Bull Volcanol 72:871–886. doi:10.1007/s00445-010-0370-y

    Article  Google Scholar 

  • Carlino S, Cubellis E, Luongo G, Obrizzo F (2006) On the mechanics of caldera resurgence of Ischia Island (southern Italy). In: Troise C, De Natale G, Kilburn CRJ (eds) Mechanisms of activity and unrest at large calderas, vol 269. Geological Society, London, pp 181–193, Special Publications

    Google Scholar 

  • Carlino S, Cubellis E, Maturano A (2009) The catastrophic 1883 earthquake at the island of Ischia (southern Italy): macroseismic data and the role of geological conditions. Nat Hazards 52:231–247. doi:10.1007/s11069-009-9367-2

    Article  Google Scholar 

  • Chiocci FL, De Alteriis G, Bosman A, Budillon F, Msrtorelli E, Violante C (2002) The Ischia debris avalanche: the result of a catastrophic collapse of the island southern flank. Geophys Res Abstr 4:EG SO2–A-06597

    Google Scholar 

  • Civetta L, Gallo G, Orsi G (1991) Sr and Nd isotope and trace element constraints on the chemical evolution of the magmatic system of Ischia (Italy) in the last 55.000 ka. J Volcanol Geotherm Res 46:213–320

    Article  Google Scholar 

  • Corry C (1988) Laccoliths. Mechanics of emplacement and growth. Geol Soc Am Spec Pap 220

  • Cubellis E, Luongo G (1998) Il Terremoto del 28 luglio 1883 a Casamicciola nell’Isola d’Ischia ‘Il contesto fisico’, Monografia N.1 – Servizio Sismico Nazionale. Istituto Poligrafico e Zecca dello Stato, Rome, pp 49–123

    Google Scholar 

  • Cubellis E, Carlino S, Iannuzzi R, Luongo G, Obrizzo F (2004) Management of historical seismic data using GIS: the island of Ischia (Southern Italy). Natural Hazard 33:379–393

    Article  Google Scholar 

  • Daly RA (1933) The depths of the Earth. Science 1987:77–95

    Google Scholar 

  • De Alteriis G, Milia A, Sacchi M, Violante C (2004) The underwater volcano-tectonic framework off Ischia Island–Phlegrean Field (Italy) based on digital terrain model and geophysical data. Geophys Res Abstr 6:07822

    Google Scholar 

  • De Natale G, Pingue F, Allard P, Zollo A (1991) Geophysical and geochemical modelling of the Campi Flegrei caldera. J Volcanol Geotherm Res 48:199–222

    Article  Google Scholar 

  • De Natale G, Troise C, Pingue F (2001) A mechanical fluid–dynamical model for ground movements at Campi Flegrei caldera. J Geodynamics 32:487–517

    Article  Google Scholar 

  • de Vita S, Sansivero F, Orsi G, Marotta E, Piochi M (2010) Volcanological and structural evolution of the Ischia resurgent caldera (Italy) over the past 10 k.y. The Geological Society of America Special Paper 464:193–241

    Article  Google Scholar 

  • Dieterich JH (1988) Growth and persistence of Hawaiian volcanic rift zone. J Geophys Res 93:4258–4270

    Article  Google Scholar 

  • Dvorak JJ, Mastrolorenzo G (1991) The mechanism of recent vertical crustal movements in Campi Flegrei caldera, southern Italy. Geology Society of America Special Paper 263:48

    Google Scholar 

  • Fusi N, Tibaldi A, Vezzoli L (1990) Vulcanismo, risorgenza calderica e relazioni con la tettonica regionale nell’isola d’Ischia. Memorie della Società Geologica Italiana 45:971–980

    Google Scholar 

  • Gilbert G K (1877) Geology of the Henry Mountains, Utah: US geographical and geological survey of the rocky mountain region, 170 pp

  • Gudmundsson A (2002) Emplacement and arrest of sheets and dykes in central volcanoes. J Volcanol Geotherm Res 116:279–298

    Article  Google Scholar 

  • Heap MJ, Vinciguerra S, Meredith PG (2009) The evolution of elastic moduli with increasing crack damage during cyclic stressing of a basalt from Mt. Etna volcano. Tectonophysics 471(1–2):153–160

    Article  Google Scholar 

  • Hill D (1992) Temperatures at the base of the seismogenetic crust beneath Long Valley caldera, California, and Phlegrean Fields caldera, Italy. In: Gasparini P, Scarpa R, Aki K (eds). Volcanic Seismology IAVCEI Proceedings in Volcanology 3 Springer Germany, pp 432–461

  • Hurwitz S, Christiansen Lizet B, Hsieh Paul A (2007) Hydrothermal fluid flow and deformation in large calderas: Inferebces from numerical simulation. J Geoph Res 112:B02206. doi:10.1029/2006JB004689

    Article  Google Scholar 

  • Jellinek MA, De Paolo DJ (2003) A model for the origin of large silicic magma chambers, precursors of caldera forming eruptions. Bull Volcanol 65:363–381

    Article  Google Scholar 

  • Johnson AM, Pollard DD (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, I. field observations, Gilbert’s model, physical properties and flow of the magma. Tectonophysics 18:261–309

    Article  Google Scholar 

  • Kerr AD, Pollard DD (1998) Toward more realistic formulations for the analysis of laccoliths. J Struct Geol 20:1783–1793

    Article  Google Scholar 

  • Kilburn CRJ (2003) Multiscale fracturing as a key to forecasting volcanic eruptions. J Volcanol Geotherm Res 125:271–289

    Article  Google Scholar 

  • Lay T, Wallace TC (1995) Modern global seismology. Academic, London

    Google Scholar 

  • Lowrie W (2007) Fundamental of geophysics. Cambridge, 381 pp

  • Luongo G, Cubellis E, Obrizzo F (1987) Ischia storia di un’isola vulcanica. Liguori, Napoli, p 164

    Google Scholar 

  • Luongo G, Cubellis E, Di Vito MA, Cascone E (1995) L’isola d’Ischia: dinamica e struttura del M. Epomeo. In: Cinquanta Anni di Attività Didattica e Scientifica del Prof. F. Ippolito. Liguori, Naples, pp 427–436

    Google Scholar 

  • Manzo M, Ricciardi GP, Casu F, Ventura G, Zeni G, Borgström S, Berardino P, Del Gaudio C, Lanari R (2006) Surface deformation analysis in the Ischia island (Italy) based on spaceborne radar interferometry. J Volcanol Geotherm Res 151:399–416

    Article  Google Scholar 

  • Marsella E, Budillon F et al (2001) Indagini Geologiche, Geofisiche e Sedimentologiche die Fondali della Baia dei Maroniti (Isola d’Ischia). Istituto di Ricerca Geomare Sud, Regione Campania. Librerie l’Ateneo due di Pironti, Naples

  • Molin P, Acocella V, Funiciello R (2003) Structural, seismic and hydrothermal features at the border of an active intermittent resurgent block: Ischia Island (Italy). J Volcanol Geotherm Res 121:65–81

    Article  Google Scholar 

  • Nakamura K (1980) Why do long rift zones develop in Hawaiian volcanoes – A possible role of thick oceanic sediments. Bull Volcanol Soc Jpn 2nd Ser 25:255–269, in Japanese with English abstract

    Google Scholar 

  • Nunziata C, Rapolla A (1987) A gravity and magnetic study of the volcanic island of Ischia, Naples, (Italy). J Volcanol Geotherm Res 31:333–344

    Article  Google Scholar 

  • Orsi G, Gallo G, Zanchi A (1991) Simpleshearing block resurgence in caldera depressions. A model from Pantelleria and Ischia. J Volcanol Geotherm Res 47:1–11

    Article  Google Scholar 

  • Paige S (1913) The bearing of progressive increase of viscosity during intrusion on the form of laccoliths. J Geol 21:541–549

    Article  Google Scholar 

  • Paoletti V, Di Maio R, Cella F, Florio G, Motschka K, Roberti N, Secomandi M, Supper R, Fedi M, Rapolla A (2009) The Ischia volcanic island (Southern Italy): inferences from potential field data interpretation. J Volcanol Geotherm Res 179(1–2):69–86

    Article  Google Scholar 

  • Papanikolaou ID, Roberts GP (2007) Geometry, kinematics and deformation rates along the active normal fault system in the southern Apennines: implications for fault growth. J Struct Geol 29:166–1880

    Article  Google Scholar 

  • Petrini R, Forte EC, Orsi G, Piochi M, Pinzino C, Pedrazzi G (2001) Influence of magma dynamics on melt structure: spectroscopic studies on volcanic glasses from the Cretaio Tephra of Ischia (Italy). Contrib Mineral Petrol 140:532–542

    Article  Google Scholar 

  • Pingue F, Berrino G, Borgstrom SEP, Brandi G, Capuano P, Cecere G, D’alessandro A, De Martino P, Del Gaudio C, d'Errico V, La Rocca A, Malaspina S, Obrizzo F, Pinto S, Ricciardi GP, Ricco C, Russo A, Sepe V, Serio C, Siniscalchi V, Tammaro U, Aquino I, Dolce M (2005) Geodesia (Vesuvio, Campi Flegrei, Isola di Ischia; Vulcano- Isole Eolie). In: Attività di Sorveglianza dell’Osservatorio Vesuviano – Rendiconto 2003. A cura di G. Macedonio and U. Tammaro, 59–170

  • Piochi M, Civetta L, Orsi G (1999) Mingling in the magmatic system of Ischia (Italy) in the past 5 ka. Mineral Petrol 66:227–258

    Article  Google Scholar 

  • Piochi M, Bruno PP, De Astis G (2005) Relative roles of rifting tectonics and magma ascent processes: Infereces from geophysical, structural, volcanological and geochemical data for neapolitan volcanic region (southern Italy). Geochem. Geophys. Geosyst. 6:Q07005. doi:10.1029/2004GC000885

  • Pollard DD, Johonson AM (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah. II. Bending and failure of overburden layers and sill formation. Tectonophysics 18:311–354

    Article  Google Scholar 

  • Rittmann A (1930) Geologie der Insel Ischia. (Berlino) Zeitschrift für Vulkanologie, VI, 268 pp

  • Rubin AM (1990) A comparison of rift-zone tectonics in Iceland and Hawaii. Bull Volcanol 52:302–319

    Article  Google Scholar 

  • Rubin AM and Pollard DD (1987) Origins of blade-like dikes in volcanic rift zones. In: Decker RW, Wright TL and Stauffer P (eds), Volcanism in Hawaii. U.S. Geol. Surv., Prof. Pap, 1350:1449–1470

  • Sbrana A, Fulignati P, Marianelli P, Boyce AJ, Cecchetti A (2009) Exhumation of an active magmatic-hydrothermal system in a resurgent caldera environment: the example of Ischia (Italy). J Geol Soc London 166:1016–1073

    Article  Google Scholar 

  • Scandone R, Cashman KV, Malone SD (2007) Magma supply, magma ascent and the style of volcanic eruptions. Earth Plan Sci Lett 253:513–529

    Google Scholar 

  • Scholz CH (2002) The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge

  • Schowalter WR (1978) Mechanics of non-Newtonian fluids. Pergamon Press, New York

  • Sibert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits and associated eruption. J Volcanol Geotherm Res 22(3–4):163–197

    Article  Google Scholar 

  • Smith RL (1979) Ash-flow magmatism. Geol Soc Am Special Paper 180:27

    Google Scholar 

  • Smith RL, Bailey RA (1968) Resurgent caldrons. Memoirs of the Geological Society of America 116:613–662

    Google Scholar 

  • Tait S, Jaupart C, Sylvie Vergniolle S (1989) Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. Earth Planet Sci Lett 92(1):107–123

    Article  Google Scholar 

  • Takada A (1994) Development of a subvolcanic structure by the interaction of liquid-filled cracks. J Volcanol Geotherm Res 62:207–224

    Article  Google Scholar 

  • Tallarico A, Santini S, Dragoni M (2005) Stress changes due to recent seismic events in the Central Apennines (Italy). Pure Appl Geophys 162:2273–2298. doi:10.1007/s00024-005-2779-3

    Article  Google Scholar 

  • Tibaldi A, Vezzoli L (1998) The space problem of caldera resurgence: an example from Ischia Island, Italy. Geologische Rundschaw 87:53–66

    Article  Google Scholar 

  • Tibaldi A, Vezzoli L (2004) A new type of volcano flank failure: the resurgent caldera sctor collapse, Ischia, Italy. Geophys Res Lett 31:L14605. doi:10.1029/2004GL020419

    Article  Google Scholar 

  • Trigila R, Battaglia M, Sottili G, Brilli M (2008) Volcanic eruptions from ghost magma chambers. Geophys Res Lett 35:L16304. doi:10.1029/2008GL034579

    Article  Google Scholar 

  • Troiano A, Di Giuseppe MG, Petrillo Z, Troise C, De Natale G (2011) Ground deformation at calderas driven by fluid injection: modeling unrest episodes at Campi Flegrei (Italy). Geophys J Int 187:833–847. doi:10.111/j.1365-246X.2011.05149.x

    Article  Google Scholar 

  • Turcotte DL and Schubert G (2001) Geodynamics. Wiley, New York

  • Vezzoli L (ed) (1988) Island of Ischia. Quaderni de La Ricerca Scientifica – CNR, 114, 10

  • Vezzoli L, Principe C, Malfatti J, Arrighi S, Tanguy JC, Le Goff M (2009) Modes and times of caldera resurgence: the <10 ka evolution of Ischia Caldera, Italy, from high-precision archaeomagnetic dating. J Volcanol Geotherm Res 186:305–319

    Article  Google Scholar 

Download references

Acknowledgements

I’m grateful to the Associate Editor Benjamin van Wyk de Vries for constructive criticism and editorial handling. I thank the two referees, Prof. Michael S. Petronis and Dr. Andrea Borgia, for their helpful comments and suggestions that greatly improved the quality of the paper. I also thank the Executive Editor James White for the final editing. This work has been funded by EU-VIIFP GEISER project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Carlino.

Additional information

Editorial responsibility: B. van Wyk de Vries

Appendix

Appendix

Used symbols

w

Plate uplift

p 0

Laccolith pressure

D

Plate stiffness

h

Plate thickness

L

Plate length

l

Half plate length

P r

Rupture pressure of rocks

σ 3

Minimum principal stress

T 0

In situ tensile strength

P L

Lithostatic pressure

P f

Pressure for the block uplift along the faults

f s

Coefficient of friction

σ n

Normal stress at the slip plane

ε L

Longitudinal strain of the plate

τ e

Critical time for chamber pressurization

Δ pcrit

Overpressure for magma injection

V

Magma chamber volume

Q

Magma influx

Qu

Required magma influx for block uplft

E

Young modulus

P net

Net pressure for block uplift

ΔP w

Water pressure variation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlino, S. The process of resurgence for Ischia Island (southern Italy) since 55 ka: the laccolith model and implications for eruption forecasting. Bull Volcanol 74, 947–961 (2012). https://doi.org/10.1007/s00445-012-0578-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0578-0

Keywords

Navigation