Skip to main content
Log in

Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Bark beetles are associated with diverse communities of symbionts. Although fungi have received significant attention, we know little about how bacteria, and in particular their interactions with fungi, affect bark beetle reproduction. We tested how interactions between four bacterial associates, two symbiotic fungi, and two opportunistic fungi affect performance of mountain pine beetles (Dendroctonus ponderosae) in host tissue. We compared beetle performance in phloem of its historical host, lodgepole pine (Pinus contorta), and its novel host recently accessed through warming climate, jack pine (Pinus banksiana). Overall, beetles produced more larvae, and established longer ovipositional and larval galleries in host tissue predominantly colonized by the symbiotic fungi, Grosmannia clavigera, or Ophiostoma montium than by the opportunistic colonizer Aspergillus and to a lesser extent, Trichoderma. This occurred in both historical and naïve hosts. Impacts of bacteria on beetle reproduction depended on particular fungus–bacterium combinations and host species. Some bacteria, e.g., Pseudomonas sp. D4–22 and Hy4T4 in P. contorta and Pseudomonas sp. Hy4T4 and Stenotrophomonas in P. banksiana, reduced antagonistic effects by Aspergillus and Trichoderma resulting in more larvae and longer ovipositional and larval galleries. These effects were not selective, as bacteria also reduced beneficial effects by symbionts in both host species. Interestingly, Bacillus enhanced antagonistic effects by Aspergillus in both hosts. These results demonstrate that bacteria influence brood development of bark beetles in host tissue. They also suggest that climate-driven range expansion of D. ponderosae through the boreal forest will not be significantly constrained by requirements of, or interactions among, its microbial associates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams AS, Six DL (2007) Temporal variation in mycophagy and prevalence of fungi associated with developmental stages of Dendroctonus ponderosae (Coleoptera: Curculionidae). Environ Entomol 36:64–72

    Article  PubMed  Google Scholar 

  • Adams AS, Currie CR, Cardoza Y, Klepzig KD, Raffa KF (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J For Res 39:1133–1147

    Article  CAS  Google Scholar 

  • Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA, Davenport KW, Currie CR, Raffa KF (2011a) Community and genomic analysis of cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. Int Soc Microb Ecol 5:1323–1331

    CAS  Google Scholar 

  • Adams AS, Boone CK, Bohlmann J, Raffa KF (2011b) Responses of bark beetle-associated bacteria to host monoterpenes and their relationship to insect life history. J Chem Ecol 37:808–817

    Article  CAS  PubMed  Google Scholar 

  • Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, Suen G, Raffa KF (2013) Mountain pine beetles colonizing historical and naïve host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol 79:3468–3475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Addison AL, Powell JA, Six DL, Moore M, Bentz BJ (2013) The role of temperature variability in stabilizing the mountain pine beetle–fungus mutualism. J Theor Biol 335:40–50

    Article  CAS  PubMed  Google Scholar 

  • Alamouti SM, Wang V, DiGuistini S, Six DL, Bohlmann J, Hamelin RC, Feau N, Breuil C (2011) Gene genealogies reveal cryptic species and host preferences for the pine fungal pathogen Grosmannia clavigera. Mol Ecol 20:2581–2602

    Article  PubMed  Google Scholar 

  • Amman GD, Cole WE (1983) Mountain pine beetle dynamics in lodgepole pine forests. Part II: population dynamics. Gen. Tech. Report INT-145. USDA Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT, p 59

  • Aukema BH, Raffa KF (2004) Behavior of adult and larval Platysoma cylindrica (Coleoptera: Histeridae) and larval Medetera bistriata (Diptera: Dolichopodidae) during subcortical predation of Ips pini (Coleoptera: Scolytidae). J Insect Behav 17:115–128

    Article  Google Scholar 

  • Aukema BH, Carroll AL, Zhu J, Raffa KF, Sickley TA, Taylor SW (2006) Landscape level analysis of mountain pine beetle in British Columbia, Canada: spatiotemporal development and spatial synchrony within the present outbreak. Ecography 29:427–441

    Article  Google Scholar 

  • Ayres M, Wilkens R, Ruel J, Lombardero M, Vallery E (2000) Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81:2198–2210

    Article  Google Scholar 

  • Barras SJ (1970) Antagonism between Dendroctonus frontalis and the fungus Ceratocystis minor. Ann Entomol Soc Am 60:1187–1190

    Article  Google Scholar 

  • Barras SJ (1972) Improved White’s solution for surface sterilization of pupae of Dendroctonus frontalis. J Econ Entomol 65:1504

    Article  CAS  PubMed  Google Scholar 

  • Bearup LA, Maxwell RM, Clow D, McCray JE (2014) Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds. Nat Clim Change 4:481–486

    Article  Google Scholar 

  • Bentz B, Six DL (2006) Ergosterol content of fungi associated with Dendroctonus ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). Ann Entomol Soc Am 99:189–194

    Article  CAS  Google Scholar 

  • Bentz BJ, Regniere J, Fettig CJ, Hansen EM, Hayes JL, Hicke JA, Kelsey RG, Negron JF, Seybold SJ (2010) Climate change and bark beetles of the western United States and Canada: direct and indirect effects. Bioscience 60:602–613

    Article  Google Scholar 

  • Bleiker KP, Six DL (2007) Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environ Entomol 36:1384–1396

    Article  CAS  PubMed  Google Scholar 

  • Blomquist GJ, Figueroa-Teran R, Aw M, Song M, Gorzalski A, Abbott NL, Chang E, Tittiger C (2010) Pheromone production in bark beetles. Insect Biochem Mol Biol 40:699–712

    Article  CAS  PubMed  Google Scholar 

  • Boone CK, Keefover-Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF (2013) Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J Chem Ecol 39:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Brand JM, Bracke JW, Markovetz AJ, Wood DL, Browne LE (1975) Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature 254:136–137

    Article  CAS  PubMed  Google Scholar 

  • Bridges JR (1981) Nitrogen-fixing bacteria associated with bark beetles. Microb Ecol 7:131–137

    Article  CAS  PubMed  Google Scholar 

  • Cardoza YJ, Klepzig KD, Raffa KF (2006) Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol Entomol 31:636–645

    Article  Google Scholar 

  • Cardoza YJ, Vasanthakumar A, Suazo A, Raffa KF (2009) Survey and phylogenetic analysis of culturable microbes in the oral secretions of three bark beetle species. Entomol Exp Appl 131:138–147

    Article  Google Scholar 

  • Carmer SG, Swanson MR (1973) Evaluation of ten pairwise multiple comparison procedures by Monte Carlo methods. J Am Stat Assoc 68:66–74

    Article  Google Scholar 

  • Casteel CL, Hansen AK, Walling LL, Paine TD (2012) Manipulation of plant defense responses by the tomato psyllid (Bactericerca cockerelli) and its associated endosymbiont Candidatus Liberibacter psyllaurous. PLoS ONE 7(4):e35191. doi:10.1371/journal.pone.0035191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung SH, Rosa C, Scully ED, Peiffer M, Tooker JJ, Hoover K, Luthe DS, Felton GW (2013) Herbivore exploits orally secreted bacteria to suppress plant defenses. Proc Natl Acad Sci USA 110:15728–15733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cigan PW, Karst J, Cahill JF Jr, Sywenky AN, Pec GJ, Erbilgin N (2015) Influence of bark beetle outbreaks on nutrient cycling in native pine stands in western Canada. Plant Soil 390:29–47

    Article  CAS  Google Scholar 

  • Clark EL, Pitt C, Carroll AL, Lindgren BS, Huber DPW (2014) Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae). PeerJ 2:e240. doi:10.7717/peerj.240

    Article  PubMed Central  PubMed  Google Scholar 

  • Colgan LJ, Erbilgin N (2011) Tree-mediated interactions between the jack pine budworm and a mountain pine beetle fungal associate. Ecol Entomol 36:425–434

    Article  Google Scholar 

  • Cudmore TJ, Björklund N, Carroll AL, Lindgren BS (2010) Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naïve host tree populations. J Appl Ecol 47:1036–1043

    Article  Google Scholar 

  • DiGuistini S, Ralph SG, Lim YW, Holt R, Jones S, Bohlmann J, Breuil C (2007) Generation and annotation of lodgepole pine and oleoresin-induced expressed sequences from the blue-stain fungus Ophiostoma clavigerum, a mountain pine beetle-associated pathogen. FEMS Microbiol Lett 267:151–158

    Article  CAS  PubMed  Google Scholar 

  • Dodds KJ, Graber C, Stephen FM (2001) Facultative intraguild predation by larval Cerambycidae (Coleoptera) on bark beetle larvae (Coleoptera: Scolytidae). Environ Entomol 30:17–22

    Article  Google Scholar 

  • Dowd PF, Shen SK (1990) The contribution of symbiotic yeast to toxin resistance of the cigarette beetle (Lasioderma serricorne F.). Entomol Exp Appl 56:241–248

    Article  CAS  Google Scholar 

  • Erbilgin N, Ma C, Whitehouse C, Shan B, Najar A, Evenden M (2014) Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naïve host ecosystem. New Phytol 201:940–950

    Article  PubMed  Google Scholar 

  • Godbout J, Beaulieu J, Bousquet J (2010) Phylogeographic structure of jack pine (Pinus banksiana; Pinaceae) supports the existence of a coastal glacial refugium in northeastern North America. Am J Bot 97:1903–1912

    Article  CAS  PubMed  Google Scholar 

  • Goodsman DW, Erbilgin N, Lieffers VJ (2012) The impact of phloem nutrients on overwintering mountain pine beetles and their fungal symbionts. Environ Entomol 41:478–486

    Article  PubMed  Google Scholar 

  • Gündüz AE, Douglas AE (2009) Symbiotic bacteria enable insect to use a nutritionally inadequate diet. Proc Biol Sci 276:987–991

    Article  Google Scholar 

  • Hofstetter TW, Moser JC (2014) The role of mites in insect–fungus associations. Annu Rev Entomol 59:537–557

    Article  CAS  PubMed  Google Scholar 

  • Hulcr J, Adams A, Raffa KF, Hofstetter R, Klepzig K, Currie C (2011) Presence and diversity of Streptomyces in Dendroctonus bark beetle galleries across North America. Microb Ecol 61:759–768

    Article  PubMed  Google Scholar 

  • Kaiser KE, McGlynn BL, Emanuel RE (2012) Ecohydrology of an outbreak: mountain pine beetle impacts trees in drier landscape positions first. Ecohydrology 6:444–454

    Article  Google Scholar 

  • Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA 109:8619–8622

    Article  Google Scholar 

  • Klepzig KD, Moser JC, Lombardero FL, Hofstetter RW, Ayres MPB (2001) Symbiosis and competition: complex interactions among beetles, fungi and mites. Symbiosis 30:83–96

    Google Scholar 

  • Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon: feedback to climate change. Nature 454:987–990

    Article  Google Scholar 

  • Langor DW, Raske AG (1987) Mortality factors and life tables of the eastern larch beetle, Dendroctonus simplex (Coleoptera: Scolytidae), in Newfoundland. Can Entomol 119:965–992

    Google Scholar 

  • Łukasik P, van Asch M, Guo H, Ferrari J, Godfray CJ (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16:214–218

    Article  PubMed  Google Scholar 

  • Mason CJ, Coutre JJ, Raffa KF (2014) Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator. Oecologia 175:901–910

    Article  PubMed  Google Scholar 

  • Mason CJ, Rubert-Nason KF, Lindroth RL, Raffa KF (2015) Aspen defense chemicals influence midgut bacterial community composition of gypsy moth. J Chem Ecol 41:75–84

    Article  CAS  PubMed  Google Scholar 

  • McGhehey JH (1971) Female size and egg production of the mountain pine beetle, Dendroctonus ponderosae Hopkins. Canadian Forest Service, Northern Forest Research Centre. Information Report NOR-X-9, p 18

  • Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, Hernández-Rodrígues C (2009) Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens, LeConte (Coleoptera: Curculionidae: Scolytinae). Microb Ecol 58:879–891

    Article  PubMed  Google Scholar 

  • Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, Hernández-Rodríguez C (2012) Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb Ecol 64:268–278

    Article  PubMed  Google Scholar 

  • Morales-Jiménez J, Vera-Ponce de León A, Garcia-Domínguez A, Martínez-Romero E, Zúñiga G, Hernández-Rodríguez G (2013) Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microb Ecol 66:200–210

    Article  PubMed  Google Scholar 

  • Nardi JB, Mackie RI, Dawson JO (2002) Could microbial symbionts of arthropod guts contribute significantly to nitrogen fixation in terrestrial ecosystems? J Insect Physiol 48:751–763

    Article  CAS  PubMed  Google Scholar 

  • Noda S, Kitade O, Inoue T, Kawai M, Kanuka M, Hiroshima K, Hongoh Y, Constantino R, Uys V, Zhong J, Kudo J, Ohkuma M (2007) Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts. Mol Ecol 16:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids conifer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206

    Article  CAS  PubMed  Google Scholar 

  • Parker BJ, Spragg CJ, Altincicek B, Gerardo NM (2013) Symbiont-mediated protection against fungal pathogens in pea aphids: a role for pathogen specificity? Appl Environ Microbiol 79:2455–2458

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pec GJ, Karst J, Sywenky AN, Cigan PW, Erbilgin N, Simard SW, Cahill JF (2015) Rapid increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests. Plus One 10(4):e0124691

    Article  Google Scholar 

  • Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S et al (2014) Complementary symbiont contributions to plant decomposition in a fungus-farming termite. Proc Natl Acad Sci 111:14500–14505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raffa KF, Smalley EB (1995) Interactions of pre-attack and induced monoterpene concentrations in host conifer defense against bark beetle–microbial complexes. Oecologia 102:285–295

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org/

  • Reid RW, Whiney HS, Watson JA (1967) Reactions of lodgepole pine to attack by Dendroctonus ponderosae Hopkins and blue-stain fungi. Can J Bot 45:1115–1126

    Article  Google Scholar 

  • Rice AV, Thormann MN, Langor DW (2007) Virulence of, and interactions among, mountain pine beetle associated blue-stain fungi on two pine species and their hybrids in Alberta. Can J Bot 85:316–323

    Article  Google Scholar 

  • Romme WH, Knight DH, Yavitt JB (1986) Mountain pine beetle outbreaks in the Rocky Mountains: regulators of primary productivity? Am Nat 127:484–494

    Article  Google Scholar 

  • Safranyik L, Carroll AL (2006) The biology and epidemiology of the mountain pine beetle in lodgepole pine forests. In: Safranyik L, Wilson B (eds) The mountain pine beetle a synthesis of biology, management, and impacts on lodgepole pine. Canadian Forest Service, Pacific Forestry Center, Victoria, pp 3–66

    Google Scholar 

  • Safranyik L, Barclay H, Thomson A, Riel WG (1999) A population dynamics model for the mountain pine beetle, Dendroctonus ponderosae Hopk. (Coleoptera: Scolytidae). Inf. Rep. BC-X-386, Pac. For. Centre, Victoria, BC

  • Safranyik L, Carroll AL, Regniere J, Langor DW, Riel WG, Shore TL, Peter B, Cooke BJ, Nealis VG, Taylor SW (2010) Potential for range expansion of mountain pine beetle into the boreal forest of North America. Can Entomol 142:415–442

    Article  Google Scholar 

  • Salom SM, Stephen FM, Thompson LC (1986) Development of Hylobius pales (Herbst) immatures in two types of phloem media. J Entomol Sci 21:43–51

    Google Scholar 

  • Schreiber LR, Gregory GF, Krause CR, Ichida JM (1988) Production, partial purification, and antimicrobial activity of a novel antibiotic produced by a Bacillus subtilis isolate from Ulmus americana. Can J Bot 66:2338–2346

    CAS  Google Scholar 

  • Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR (2008) Bacterial protection of beetle–fungus mutualism. Science 322:63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Six DL, Bentz BJ (2007) Temperature determine symbiont abundance in a multipartite bark beetle–fungus ectosymbiosis. Microb Ecol 54:112–118

    Article  CAS  PubMed  Google Scholar 

  • Six DL, Paine TD (1998) Effects of mycangial fungi and host tree species on progeny survival and emergence of Dendroctonus ponderosae (Coleoptera: Scolytidae). Environ Entomol 27:1393–1401

    Article  Google Scholar 

  • Taft S, Najar A, Godbout J, Bousquet J, Erbilgin N (2015) Variation in foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle. Front Plant Sci 6:342. doi:10.3389/fpls.2015.00342

    Article  PubMed Central  PubMed  Google Scholar 

  • Taylor AD, Hayes JL, Moser JC (1992) A phloem sandwich allowing attack and colonization by bark beetles (Coleoptera, Scolytidae) and associates. J Entomol Sci 27:311–316

    Google Scholar 

  • Thompson BM, Grebenok RJ, Behmer ST, Gruner DS (2013) Microbial symbionts shape the sterol Profile of the xylem-feeding woodwasp, Sirex noctilio. J Chem Ecol 39:129–139

    Article  CAS  PubMed  Google Scholar 

  • Treu R, Karst J, Randall M, Pec GJ, Cigan P, Simard SW, Cooke J, Erbilgin N, Cahill JF (2014) Decline of ectomycorrhizal fungi following mountain pine beetle infestation. Ecology 95:1096–1103

    Article  PubMed  Google Scholar 

  • Wood SL, Bright DE (1992) A catalog of Scolytidae and Platypodidae (Coleoptera), part 1 and 2. Taxonomic Index Volumes A and B. Great Basin Nat. Mem. 13A and B. Brigham Young Univ., Provo, UT

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of micro-organisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by the USDA-Agriculture and Food Research Initiative (2003-3502-13528), and, in part, through post-graduate scholarships at the University of Alberta and from the Natural Sciences and Engineering Research Council of Canada—Discovery Grant, an Alberta Advanced Education and Technology Grant, and a Canada Research Chair Program awarded to NE. We thank Dr. Kathy Bleiker (Pacific Forestry Centre, Victoria, BC) for her valuable suggestions and feedback. Pam Melnick and Devon Letourneau from the Alberta Environment and Sustainable Resources Development helped us to set traps to collect live beetles. We thank two anonymous reviewers for helpful comments that improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadir Erbilgin.

Additional information

Communicated by Richard Karban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Therrien, J., Mason, C.J., Cale, J.A. et al. Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion. Oecologia 179, 467–485 (2015). https://doi.org/10.1007/s00442-015-3356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-015-3356-9

Keywords

Navigation