Skip to main content
Log in

Can transgenerational plasticity contribute to the invasion success of annual plant species?

  • Population ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Adaptive transgenerational plasticity (TGP), i.e., significantly higher fitness when maternal and offspring conditions match, might contribute to the population growth of non-native species in highly variable environments. However, comparative studies that directly test this hypothesis are lacking. Therefore, we performed a reciprocal split-brood experiment to compare TGP in response to N and water availability in single populations of two invasive (Amaranthus retroflexus, Galinsoga parviflora) and two congeneric non-invasive introduced species (Amaranthus albus, Galinsoga ciliata). We hypothesized that the transgenerational effect is adaptive: (1) in invasive species compared with non-invasive adventives, and (2) in stressful conditions compared with resource-rich environments. The phenotypic variation among offspring was generated, in large part, by our experimental treatments in the maternal generation; therefore, we demonstrated a direct TGP effect on the offspring’s adult fitness. We found evidence, for the first time, that invasive and non-invasive adventive species differ regarding the expression of TGP in the adult stage, as adaptive responses were found exclusively in the invasive species. The manifestation of TGP was more explicit under resource-rich conditions; therefore, it might contribute to the population dynamics of non-native species in resource-rich sites rather than to their ecological tolerance spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrawal AA (2001) Phenotypic plasticity in the interactions and evolution of species. Science 294:321–326. doi:10.1126/science.1060701

    Article  CAS  PubMed  Google Scholar 

  • Ahlroth P, Alatalo R, Holopainen A, Kumpulainen T, Suhonen V (2003) Founder population size and number of source populations enhance colonization success in waterstriders. Oecologia 137:617–620. doi:10.1007/s00442-003-1344-y

    Article  PubMed  Google Scholar 

  • Anastasiu P, Negrean G (2009) Neophytes in Romania. In: Rákosy L, Momeu L (eds) Neobiota din România. Presa Universitară Clujeană, Cluj-Napoca, pp 66–97

    Google Scholar 

  • Anastasiu P, Negrean G, Samoilă C, Memedemin D, Cogălniceanu D (2011) A comparative analysis of alien plant species along the Romanian Black Sea coastal area. The role of harbours. J Coast Cons 15:595–606. doi:10.1007/s11852-011-0149-0

    Article  Google Scholar 

  • Bahn M, Rodeghiero M, Anderson-Dunn M, Dore S, Gimeno C, Drösler M, Cernusca A (2008) Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems 11:1352–1367. doi:10.1007/s10021-008-9198-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baker HG (1965) Characteristics and modes of origin of weeds. In: Baker HG, Stebbins GL (eds) The genetics of colonizing species. Academic Press, New York, pp 147–169

    Google Scholar 

  • Balogh L, Dancza I, Király G (2004) A magyarországi neofitonok időszerű jegyzéke és besorolásuk inváziós szempontból. In: Mihály B, Botta-Dukát Z (eds) Özönnövények. Biológiai inváziók Magyarországon, TermészetBÚVÁR Alapítvány Kiadó, pp 61–92

    Google Scholar 

  • Barker DJP (1997) Maternal nutrition, fetal nutrition, and disease in later life. Nutrition 13:807–813

    Article  CAS  PubMed  Google Scholar 

  • Bazzaz FA (1997) Allocation of resources in plants: state of the science and critical questions. In: Bazzaz F, Grace J (eds) Plant resource allocation. Academic Press, San Diego, pp 1–37

    Chapter  Google Scholar 

  • Bischoff A, Müller-Schärer H (2010) Testing population differentiation in plant species—how important are environmental maternal effects. Oikos 119:445–454. doi:10.1111/j.1600-0706.2009.17776.x

    Article  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115. doi:10.1111/j.1461-0248.2007.01130.x

    PubMed  Google Scholar 

  • Costea M, Weaver SE, Tardif FJ (2004) The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can J Plant Sci 84:631–668. doi:10.4141/P02-183

  • Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431. doi:10.1111/j.1461-0248.2011.01596.x

    Article  PubMed  Google Scholar 

  • Donohue K (1999) Seed dispersal as a maternally influenced character: mechanistic basis of maternal effects and selection on maternal characters in an annual plant. Am Nat 154:674–689. doi:10.1086/303273

    Article  PubMed  Google Scholar 

  • Dujardin G, Bureau F, Decaëns T, Langlois E (2011) Morphological and reproductive responses of dominant plant species to local conditions in herbaceous successional stages of a calcareous hillside. Flora Morphol Distrib Funct Ecol Plants 206:1030–1039. doi:10.1016/j.flora.2011.05.012

    Article  Google Scholar 

  • Dyer AR, Brown CS, Espeland EK, McKay JK, Meimberg H, Rice KJ (2010) The role of adaptive trans-generational plasticity in biological invasions of plants. Evol Appl 3:179–192. doi:10.1111/j.1752-4571.2010.00118.x

    Article  PubMed Central  Google Scholar 

  • Espeland EK, Rice KJ (2012) Within- and trans-generational plasticity affects the opportunity for selection in barbed goatgrass (Aegilops triuncialis). Am J Bot 99:2058–2062. doi:10.3732/ajb.1200372

    Article  PubMed  Google Scholar 

  • Galloway LF (2005) Maternal effects provide phenotypic adaptation to local environmental conditions. New Phytol 166:93–100. doi:10.1111/j.1469-8137.2004.01314.x

    Article  PubMed  Google Scholar 

  • Galloway LF, Etterson JR (2007) Transgenerational plasticity is adaptive in the wild. Science 318:1134–1136. doi:10.1126/science.1148766

    Article  CAS  PubMed  Google Scholar 

  • Garnier E, Shipley B, Roumet C, Laurent G (2001) A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct Ecol 15:688–695. doi:10.1046/j.0269-8463.2001.00563.x

    Article  Google Scholar 

  • Godoy O, Valladares F, Castro-Díez P (2011) Multispecies comparison reveals that invasive and native plants differ in their traits but not in their plasticity. Funct Ecol 25:1248–1259. doi:10.1111/j.1365-2435.2011.01886.x

    Article  Google Scholar 

  • Grafen A (1988) On the uses of data on lifetime reproductive success. In: Clutton-Brock TH (ed) Reproductive success. Studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago, pp 454–471

    Google Scholar 

  • Herman JJ, Sultan SE (2011) Adaptive transgenerational plasticity in plants: case studies, mechanisms, and implications for natural populations. Front Plant Sci 2:1–10. doi:10.3389/fpls.2011.00102

    Article  Google Scholar 

  • Herman JJ, Sultan SE, Horgan-Kobelski T, Riggs C (2012) Adaptive transgenerational plasticity in an annual plant: grandparental and parental drought stress enhance performance of seedlings in dry soil. Integr Comp Biol 52:77–88. doi:10.1093/icb/ics041

    Article  PubMed  Google Scholar 

  • Jacobs BS, Lesmeister SA (2012) Maternal environmental effects on fitness, fruit morphology and ballistic seed dispersal distance in an annual forb. Funct Ecol 26:588–597. doi:10.1111/j.1365-2435.2012.01964.x

    Article  Google Scholar 

  • Jensen LS, Schjoerring JK, van der Hoek KW (2011) Benefits of nitrogen for food, fibre and industrial production. In: Sutton MA, et al. (eds) The European nitrogen assessment, sources, effects and policy perspectives. Cambridge University Press, Cambridge, pp 32–61

    Chapter  Google Scholar 

  • Kirkpatrick M, Lande R (1989) The evolution of maternal characters. Evolution 43:485–503

    Article  Google Scholar 

  • Kucewicz M, Gojło E, Kowalska A (2010) The effect of achene heteromorphism on progeny traits in the shaggy soldier [Galinsoga ciliata (Rafin) SF Blake]. Acta Agrobot 63:51–56. doi:10.5586/aa.2010.032

    Article  Google Scholar 

  • Latzel V, Klimešová J (2010) Transgenerational plasticity in clonal plants. Evol Ecol 24:1537–1543. doi:10.1007/s10682-010-9385-2

    Article  Google Scholar 

  • Latzel V, Klimešová J, Hájek T, Gómez S, Šmilauer P (2010) Maternal effects alter progeny’s response to disturbance and nutrients in two Plantago species. Oikos 119:1700–1710. doi:10.1111/j.1600-0706.2010.18737.x

    Article  Google Scholar 

  • Lechowicz MJ, Bell G (1991) The ecology and genetics of fitness in forest plants. II. Microspatial heterogeneity of the edaphic environment. J Ecol 79:687–696

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Evol Ecol 20:223–228. doi:10.1016/j.tree.2005.02.004

    Article  Google Scholar 

  • Maire V, Gross N, Hill D, Martin R, Wirth C, Wright IJ, Soussana JF (2013) Disentangling coordination among functional traits using an individual-centred model: impact on plant performance at intra-and inter-specific levels. Plos One 8:e77372. doi:10.1371/journal.pone.0077372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall DJ, Uller T (2007) When is a maternal effect adaptive? Oikos 116:1957–1963. doi:10.1111/j.2007.0030-1299.16203.x

    Article  Google Scholar 

  • Mousseau TA, Fox CW (1998) Maternal effects as adaptations. Oxford University Press, Oxford

    Google Scholar 

  • Palació-López K, Gianoli E (2011) Invasive plants do not display greater phenotypic plasticity than their native or non-invasive counterparts: a meta-analysis. Oikos 120:1393–1401. doi:10.1111/j.1600-0706.2010.19114.x

    Article  Google Scholar 

  • Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83:553–559. doi:10.1007/BF00317209

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org/

  • Rice KJ, Gerlach JD Jr, Dyer AR, McKay JK (2013) Evolutionary ecology along invasion fronts of the annual grass Aegilops triuncialis. Biol Inv 15:2531–2545. doi:10.1007/s10530-013-0471-6

    Article  Google Scholar 

  • Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993. doi:10.1111/j.1461-0248.2006.00950.x

    Article  PubMed  Google Scholar 

  • Roach DA, Wulff RD (1987) Maternal effects in plants. Annu Rev Ecol Syst 18:209–235

    Article  Google Scholar 

  • Rossiter MC (1996) Incidence and consequences of inherited environmental effects. Annu Rev Ecol Syst 27:451–476

    Article  Google Scholar 

  • Rouget M, Richardson DM (2003) Inferring process from pattern in plant invasions: a semimechanistic model incorporating propagule pressure and environmental factors. Am Nat 162:713–724

    Article  PubMed  Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O’Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Schuler MS, Orrock JL (2012) The maladaptive significance of maternal effects for plants in anthropogenically modified environments. Evol Ecol 26:475–481. doi:10.1007/s10682-011-9499-1

    Article  Google Scholar 

  • Sultan SE (2004) Promising directions in plant phenotypic plasticity. Perspect Plant Ecol 6:227–233. doi:10.1078/1433-8319-00082

    Article  Google Scholar 

  • Sultan SE, Barton K, Wilczek AM (2009) Contrasting patterns of transgenerational plasticity in ecologically distinct congeners. Ecology 90:1831–1839. doi:10.1890/08-1064.1

    Article  PubMed  Google Scholar 

  • Travis JMJ, Hammershoj M, Stephenson C (2005) Adaptation and propagule pressure determine invasion dynamics: insights from a spatially explicit model for sexually reproducing species. Evol Ecol Res 7:37–51

    Google Scholar 

  • Uller T (2008) Developmental plasticity and the evolution of parental effects. Trends Ecol Evol 23:432–438. doi:10.1016/j.tree.2008.04.005

    Article  PubMed  Google Scholar 

  • Vilela A, Cariaga R, González-Paleo L, Ravetta D (2008) Trade-offs between reproductive allocation and storage in species of Oenothera L. (Onagraceae) native to Argentina. Acta Oecol 33:85–92. doi:10.1016/j.actao.2007.09.003

    Article  Google Scholar 

  • Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892. doi:10.1111/j.0030-1299.2007.15559.x

    Article  Google Scholar 

  • Willson MF, Traveset A (2000) The ecology of seed dispersal. In: Fenner M (ed) Seeds: the ecology of regeneration in plant communities, 2. CAB International, Wallingford, pp 85–110

    Chapter  Google Scholar 

  • Zhang R, Gallagher RS, Shea K (2012) Maternal warming affects early life stages of an invasive thistle. Plant Biol 14:783–788. doi:10.1111/j.1438-8677.2011.00561.x

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to L. Bartha, M. Beldean, P. Domokos, E. Fodor, A. Kozma, T. Kuhn, B. Lózer, Z. Nyika, O. Pál and H. Téglás for their assistance during the experiments, L. Sutcliffe for polishing the English of the manuscript, and to two anonymous reviewers for comments on earlier versions of this manuscript. We thank the Alexandru Borza Botanical Garden, Cluj-Napoca, especially Prof. Vasile Cristea for ensuring the necessary infrastructure during the experiment. We thank J. A. Lau for helpful comments on the manuscript. The experiments comply with the current laws of the country (Romania) in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annamária Fenesi.

Additional information

Communicated by Jennifer A. Lau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fenesi, A., Dyer, A.R., Geréd, J. et al. Can transgenerational plasticity contribute to the invasion success of annual plant species?. Oecologia 176, 95–106 (2014). https://doi.org/10.1007/s00442-014-2994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-2994-7

Keywords

Navigation