Skip to main content

Advertisement

Log in

Tissue engineering: generation of differentiated artificial tissues for biomedical applications

  • REVIEW
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract 

A new field in biomedical science has been established. Cell biologists, engineers, and surgeons now work within a team. Artificial connective, epithelial, or neuronal tissues are being constructed using living cells and different kinds of biomaterials. Numerous companies and laboratories are presenting dynamic developments in this field. Prognoses predict that, at the beginning of the coming century, the industry of tissue engineering will reach the importance of the present genetic technology. An enormous demand for organ and tissue transplants motivates research activities and drives the acquisition of innovative techniques and creative solutions. At the front of this development is the creation of artificial skin for severely burned patients and the generation of artificial cartilage for implantation in articular joint diseases. Future challenges are the construction of liver organoids and the development of an artificial kidney on the basis of cultured cells. In this paper we show strategies, needs, tools, and equipment for tissue engineering. The presupposition for all projects is the induction, development, and maintenance of differentiation within the tissue under in vitro conditions. As experiments in conventional culture dishes continued to fail, new cell and tissue culture methods had to be developed. Tissues are cultured under conditions as close as possible to their natural environment. To optimize adherence or embedding, cells are grown on novel tissue carriers and on individually selected biomatrices or scaffolds. The tissues are subsequently transferred into different types of containers for permanent perfusion with fresh culture medium. This guarantees constant nutrition of the developing tissue and prevents the accumulation of harmful metabolites. An organo-typical environment for epithelial cells, for example, is obtained in gradient containers, which are permanently superfused at the apical and basal sides with different media. Long term experiments result in cultured tissues in a quality thus far unreached.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 17 April 1997 / Accepted: 27 May 1997

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minuth, W., Sittinger, M. & Kloth, S. Tissue engineering: generation of differentiated artificial tissues for biomedical applications. Cell Tissue Res 291, 1–11 (1997). https://doi.org/10.1007/s004410050974

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004410050974

Navigation