Skip to main content
Log in

Hypoxia-regulated catecholamine secretion in chromaffin cells

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Adrenal catecholamine (CAT) secretion is a general physiological response of animals to environmental stressors such as hypoxia. This represents an important adaptive mechanism to maintain homeostasis and protect vital organs such as the brain. In adult mammals, CAT secretory responses are triggered by activation of the sympathetic nervous system that supplies cholinergic innervation of adrenomedullary chromaffin cells (AMC) via the splanchnic nerve. In the neonate, the splanchnic innervation of AMC is immature or absent, yet hypoxia stimulates a non-neurogenic CAT secretion that is critical for adaptation to extra-uterine life. This non-neurogenic, hypoxia-sensing mechanism in AMC is gradually lost or suppressed postnatally along a time course that parallels the development of splanchnic innervation. Moreover, denervation of adult AMC results in a gradual return of the direct hypoxia-sensing mechanism. The signaling pathways by which neonatal AMC sense acute hypoxia leading to non-neurogenic CAT secretion and the mechanisms that underlie the re-acquisition of hypoxia-sensing properties by denervated adult AMC, are beginning to be understood. This review will focus on current views concerning the mechanisms responsible for direct acute hypoxia sensing and CAT secretion in perinatal AMC and how they are regulated by innervation during postnatal development. It will also briefly discuss plasticity mechanisms likely to contribute to CAT secretion during exposures to chronic and intermittent hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams MB, Simonetta G, McMillen IC (1996) The non-neurogenic catecholamine response of the fetal adrenal to hypoxia is dependent on activation of voltage sensitive Ca2+ channels. Brain Res Dev Brain Res 94:182–189

    Article  CAS  PubMed  Google Scholar 

  • Betito K, Diorio J, Meaney MJ, Boksa P (1992) Adrenal phenylethanolamine N-methyltransferase induction in relation to glucocorticoid receptor dynamics: evidence that acute exposure to high cortisol levels is sufficient to induce the enzyme. J Neurochem 58:1853–1862

    Article  CAS  PubMed  Google Scholar 

  • Bournaud R, Hidalgo J, Yu H, Girard E, Shimahara T (2007) Catecholamine secretion from rat foetal adrenal chromaffin cells and hypoxia sensitivity. Pflugers Arch 454:83–92

    Article  CAS  PubMed  Google Scholar 

  • Brown ST, Kelly KF, Daniel JM, Nurse CA (2009) Hypoxia inducible factor (HIF)-2 alpha is required for the development of the catecholaminergic phenotype of sympathoadrenal cells. J Neurochem 110:622–630

    Article  CAS  PubMed  Google Scholar 

  • Brown ST, Reyes EP, Nurse CA (2011) Chronic hypoxia upregulates adenosine 2a receptor expression in chromaffin cells via hypoxia inducible factor-2alpha: role in modulating secretion. Biochem Biophys Res Commun 412:466–472

    Article  CAS  PubMed  Google Scholar 

  • Buckler KJ (2015) TASK channels in arterial chemoreceptors and their role in oxygen and acid sensing. Pflugers Arch 467:1013–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buttigieg J, Brown S, Zhang M, Lowe M, Holloway AC, Nurse CA (2008a) Chronic nicotine in utero selectively suppresses hypoxic sensitivity in neonatal rat adrenal chromaffin cells. FASEB J 22:1317–1326

    Article  CAS  PubMed  Google Scholar 

  • Buttigieg J, Brown ST, Lowe M, Zhang M, Nurse CA (2008b) Functional mitochondria are required for O2 but not CO2 sensing in immortalized adrenomedullary chromaffin cells. Am J Physiol Cell Physiol 294:C945–C956

    Article  CAS  PubMed  Google Scholar 

  • Buttigieg J, Brown S, Holloway AC, Nurse CA (2009) Chronic nicotine blunts hypoxic sensitivity in perinatal rat adrenal chromaffin cells via upregulation of KATP channels: role of alpha7 nicotinic acetylcholine receptor and hypoxia-inducible factor-2alpha. J Neurosci 29:7137–7147

    Article  CAS  PubMed  Google Scholar 

  • Calbet JA (2003) Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol 551:379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cannon WB, Hoskins RG (1911) The effects of asphyxia, hyperpnea, and sensory stimulation on adrenal secretion. Am J Phys 29:274–279

    Google Scholar 

  • Carabelli V, Marcantoni A, Comunanza V, de Luca A, Diaz J, Borges R, Carbone E (2007) Chronic hypoxia up-regulates alpha1H T-type channels and low-threshold catecholamine secretion in rat chromaffin cells. J Physiol 584:149–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung CY (1990) Fetal adrenal medulla catecholamine response to hypoxia-direct and neural components. Am J Phys 258:R1340–R1346

    CAS  Google Scholar 

  • Cohen G, Roux JC, Grailhe R, Malcolm G, Changeux JP, Lagercrantz H (2005) Perinatal exposure to nicotine causes deficits associated with a loss of nicotinic receptor function. Proc Natl Acad Sci U S A 102:3817–3821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comline RS, Silver M (1961) The release of adrenaline and noradrenaline from the adrenal glands of the foetal sheep. J Physiol 156:424–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Comline RS, Silver M (1966) The development of the adrenal medulla of the foetal and new-born calf. J Physiol 183:305–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Del Toro R, Levitsky KL, Lopez-Barneo J, Chiara MD (2003) Induction of T-type calcium channel gene expression by chronic hypoxia. J Biol Chem 278:22316–22324

    Article  PubMed  Google Scholar 

  • Fearon IM, Thompson RJ, Samjoo I, Vollmer C, Doering LC, Nurse CA (2002) O2-sensitive K+ channels in immortalised rat chromaffin-cell-derived MAH cells. J Physiol 545:807–818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Aguera MC, Gao L, Gonzalez-Rodriguez P, Pintado CO, Arias-Mayenco I, Garcia-Flores P, Garcia-Perganeda A, Pascual A, Ortega-Saenz P, Lopez-Barneo J (2015) Oxygen sensing by arterial Chemoreceptors depends on mitochondrial complex I Signaling. Cell Metab 22:825–837

    Article  CAS  PubMed  Google Scholar 

  • Gao L, Bonilla-Henao V, Garcia-Flores P, Arias-Mayenco I, Ortega-Saenz P, Lopez-Barneo J (2017) Gene expression analyses reveal metabolic specifications in acute O2-sensing chemoreceptor cells. J Physiol 595(18):6091–6120

  • Garcia-Fernandez M, Mejias R, Lopez-Barneo J (2007) Developmental changes of chromaffin cell secretory response to hypoxia studied in thin adrenal slices. Pflugers Arch 454:93–100

    Article  CAS  PubMed  Google Scholar 

  • Helan M, Aravamudan B, Hartman WR, Thompson MA, Johnson BD, Pabelick CM, Prakash YS (2014) BDNF secretion by human pulmonary artery endothelial cells in response to hypoxia. J Mol Cell Cardiol 68:89–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubold C, Lang UE, Gehring H, Schultes B, Schweiger U, Peters A, Hellweg R, Oltmanns KM (2009) Increased serum brain-derived neurotrophic factor protein upon hypoxia in healthy young men. J Neural Transm (Vienna) 116:1221–1225

    Article  CAS  Google Scholar 

  • Hui AS, Striet JB, Gudelsky G, Soukhova GK, Gozal E, Beitner-Johnson D, Guo SZ, Sachleben LR Jr, Haycock JW, Gozal D, Czyzyk-Krzeska MF (2003) Regulation of catecholamines by sustained and intermittent hypoxia in neuroendocrine cells and sympathetic neurons. Hypertension 42:1130–1136

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Fujishiro N, Imanaga I (1999) Na+ pump inhibition and non-selective cation channel activation by cyanide and anoxia in guinea-pig chromaffin cells. J Physiol 519(Pt 2):385–396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson TS, Young JB, Landsberg L (1983) Sympathoadrenal responses to acute and chronic hypoxia in the rat. J Clin Invest 71:1263–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kameda Y (2014) Signaling molecules and transcription factors involved in the development of the sympathetic nervous system, with special emphasis on the superior cervical ganglion. Cell Tissue Res 357:527–548

    Article  CAS  PubMed  Google Scholar 

  • Keating DJ, Rychkov GY, Roberts ML (2001) Oxygen sensitivity in the sheep adrenal medulla: role of SK channels. Am J Physiol Cell Physiol 281:C1434–C1441

    Article  CAS  PubMed  Google Scholar 

  • Keating DJ, Rychkov GY, Giacomin P, Roberts ML (2005) Oxygen-sensing pathway for SK channels in the ovine adrenal medulla. Clin Exp Pharmacol Physiol 32:882–887

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Kang D (2015) Role of K(2)p channels in stimulus-secretion coupling. Pflugers Arch 467:1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, To M, Saruta J, Hayashi T, Sugiyama H, Tsukinoki K (2013) Role of TrkB expression in rat adrenal gland during acute immobilization stress. J Neurochem 124:224–232

    Article  CAS  PubMed  Google Scholar 

  • Kumar GK, Nanduri J, Peng YJ, Prabhakar NR (2015) Neuromolecular mechanisms mediating the effects of chronic intermittent hypoxia on adrenal medulla. Respir Physiol Neurobiol 209:115–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagercrantz H, Bistoletti P (1977) Catecholamine release in the newborn infant at birth. Pediatr Res 11:889–893

    Article  CAS  PubMed  Google Scholar 

  • Lagercrantz H, Slotkin TA (1986) The "stress" of being born. Sci Am 254:100–107

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lim W, Eun SY, Kim SJ, Kim J (2000) Inhibition of apamin-sensitive K+ current by hypoxia in adult rat adrenal chromaffin cells. Pflugers Arch 439:700–704

    CAS  PubMed  Google Scholar 

  • Levitsky KL, Lopez-Barneo J (2009) Developmental change of T-type Ca2+ channel expression and its role in rat chromaffin cell responsiveness to acute hypoxia. J Physiol 587:1917–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall JM (1994) Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev 74:543–594

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki-Oda N, Takeuchi Y, Matsumura K, Oosawa Y, Watanabe Y (1997) Hypoxia-induced catecholamine release and intracellular Ca2+ increase via suppression of K+ channels in cultured rat adrenal chromaffin cells. J Neurochem 69:377–387

    Article  CAS  PubMed  Google Scholar 

  • Mojet MH, Mills E, Duchen MR (1997) Hypoxia-induced catecholamine secretion in isolated newborn rat adrenal chromaffin cells is mimicked by inhibition of mitochondrial respiration. J Physiol 504(Pt 1):175–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Cabello AM, Toledo-Aral JJ, Lopez-Barneo J, Echevarria M (2005) Rat adrenal chromaffin cells are neonatal CO2 sensors. J Neurosci 25:6631–6640

    Article  CAS  PubMed  Google Scholar 

  • Nikolaou KE, Malamitsi-Puchner A, Boutsikou T, Economou E, Boutsikou M, Puchner KP, Baka S, Hassiakos D (2006) The varying patterns of neurotrophin changes in the perinatal period. Ann N Y Acad Sci 1092:426–433

    Article  CAS  PubMed  Google Scholar 

  • Nurse CA (2009) The International Society for Arterial Chemoreception XVIIth meeting. Concluding remarks. Adv Exp Med Biol 648:447–450

    Article  PubMed  Google Scholar 

  • Nurse CA, Buttigieg J, Brown S, Holloway AC (2009) Regulation of oxygen sensitivity in adrenal chromaffin cells. Ann N Y Acad Sci 1177:132–139

    Article  CAS  PubMed  Google Scholar 

  • Olver RE, Ramsden CA, Strang LB, Walters DV (1986) The role of amiloride-blockable sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lamb. J Physiol 376:321–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A 107:10719–10724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prabhakar NR, Kumar GK, Peng YJ (2012) Sympatho-adrenal activation by chronic intermittent hypoxia. J Appl Physiol 113(1985):1304–1310

    Article  PubMed  PubMed Central  Google Scholar 

  • Ream MA, Chandra R, Peavey M, Ray AM, Roffler-Tarlov S, Kim HG, Wetsel WC, Rockman HA, Chikaraishi DM (2008) High oxygen prevents fetal lethality due to lack of catecholamines. Am J Physiol Regul Integr Comp Physiol 295:R942–R953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rico AJ, Prieto-Lloret J, Gonzalez C, Rigual R (2005) Hypoxia and acidosis increase the secretion of catecholamines in the neonatal rat adrenal medulla: an in vitro study. Am J Physiol Cell Physiol 289:C1417–C1425

    Article  CAS  PubMed  Google Scholar 

  • Rychkov GY, Adams MB, McMillen IC, Roberts ML (1998) Oxygen-sensing mechanisms are present in the chromaffin cells of the sheep adrenal medulla before birth. J Physiol 509(Pt 3):887–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salman S, Buttigieg J, Zhang M, Nurse CA (2013) Chronic exposure of neonatal rat adrenomedullary chromaffin cells to opioids in vitro blunts both hypoxia and hypercapnia chemosensitivity. J Physiol 591:515–529

  • Salman S, Buttigieg J, Nurse CA (2014a) Ontogeny of O2 and CO2//H+ chemosensitivity in adrenal chromaffin cells: role of innervation. J Exp Biol 217:673–681

    Article  CAS  PubMed  Google Scholar 

  • Salman S, Holloway AC, Nurse CA (2014b) Chronic opioids regulate KATP channel subunit Kir6.2 and carbonic anhydrase I and II expression in rat adrenal chromaffin cells via HIF-2alpha and protein kinase a. Am J Physiol Cell Physiol 307:C266–C277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott AL, Zhang M, Nurse CA (2015) Enhanced BDNF signalling following chronic hypoxia potentiates catecholamine release from cultured rat adrenal chromaffin cells. J Physiol 593:3281–3299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidler FJ, Slotkin TA (1985) Adrenomedullary function in the neonatal rat: responses to acute hypoxia. J Physiol 358:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidler FJ, Slotkin TA (1986) Ontogeny of adrenomedullary responses to hypoxia and hypoglycemia: role of splanchnic innervation. Brain Res Bull 16:11–14

    Article  CAS  PubMed  Google Scholar 

  • Slotkin TA, Seidler FJ (1988) Adrenomedullary catecholamine release in the fetus and newborn: secretory mechanisms and their role in stress and survival. J Dev Physiol 10:1–16

    CAS  PubMed  Google Scholar 

  • Smith KA, Waypa GB, Schumacker PT (2017) Redox signaling during hypoxia in mammalian cells. Redox Biol 13:228–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souvannakitti D, Nanduri J, Yuan G, Kumar GK, Fox AP, Prabhakar NR (2010) NADPH oxidase-dependent regulation of T-type Ca2+ channels and ryanodine receptors mediate the augmented exocytosis of catecholamines from intermittent hypoxia-treated neonatal rat chromaffin cells. J Neurosci 30:10763–10772

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi Y, Mochizuki-Oda N, Yamada H, Kurokawa K, Watanabe Y (2001) Nonneurogenic hypoxia sensitivity in rat adrenal slices. Biochem Biophys Res Commun 289:51–56

    Article  CAS  PubMed  Google Scholar 

  • Thompson RJ, Nurse CA (1998) Anoxia differentially modulates multiple K+ currents and depolarizes neonatal rat adrenal chromaffin cells. J Physiol 512(Pt 2):421–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson RJ, Jackson A, Nurse CA (1997) Developmental loss of hypoxic chemosensitivity in rat adrenomedullary chromaffin cells. J Physiol 498(Pt 2):503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson RJ, Farragher SM, Cutz E, Nurse CA (2002) Developmental regulation of O(2) sensing in neonatal adrenal chromaffin cells from wild-type and NADPH-oxidase-deficient mice. Pflugers Arch 444:539–548

    Article  CAS  PubMed  Google Scholar 

  • Thompson RJ, Buttigieg J, Zhang M, Nurse CA (2007) A rotenone-sensitive site and H2O2 are key components of hypoxia-sensing in neonatal rat adrenomedullary chromaffin cells. Neuroscience 145:130–141

    Article  CAS  PubMed  Google Scholar 

  • Walters DV, Olver RE (1978) The role of catecholamines in lung liquid absorption at birth. Pediatr Res 12:239–242

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank several colleagues for their contributions to the ideas developed in this review, especially Drs. Roger Thompson, Josef Buttigieg, Stephen Brown and Alison Holloway. We also thank the Heart and Stroke Foundation of Ontario, Natural Sciences and Engineering Research Council of Canada and Canadian Institutes of Health Research for grant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin A. Nurse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurse, C.A., Salman, S. & Scott, A.L. Hypoxia-regulated catecholamine secretion in chromaffin cells. Cell Tissue Res 372, 433–441 (2018). https://doi.org/10.1007/s00441-017-2703-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-017-2703-z

Keywords

Navigation