Skip to main content
Log in

A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease

Human Genetics Aims and scope Submit manuscript

Abstract

Diverse long interspersed element-1 (LINE-1 or L1)-dependent mutational mechanisms have been extensively studied with respect to L1 and Alu elements engineered for retrotransposition in cultured cells and/or in genome-wide analyses. To what extent the in vitro studies can be held to accurately reflect in vivo events in the human genome, however, remains to be clarified. We have attempted to address this question by means of a systematic analysis of recent L1-mediated retrotranspositional events that have caused human genetic disease, with a view to providing a more complete picture of how L1-mediated retrotransposition impacts upon the architecture of the human genome. A total of 48 such mutations were identified, including those described as L1-mediated retrotransposons, as well as insertions reported to contain a poly(A) tail: 26 were L1 trans-driven Alu insertions, 15 were direct L1 insertions, four were L1 trans-driven SVA insertions, and three were associated with simple poly(A) insertions. The systematic study of these lesions, when combined with previous in vitro and genome-wide analyses, has strengthened several important conclusions regarding L1-mediated retrotransposition in humans: (a) approximately 25% of L1 insertions are associated with the 3′ transduction of adjacent genomic sequences, (b) ~25% of the new L1 inserts are full-length, (c) poly(A) tail length correlates inversely with the age of the element, and (d) the length of target site duplication in vivo is rarely longer than 20 bp. Our analysis also suggests that some 10% of L1-mediated retrotranspositional events are associated with significant genomic deletions in humans. Finally, the identification of independent retrotranspositional events that have integrated at the same genomic locations provides new insight into the L1-mediated insertional process in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, Levi-Acobas F, Cruaud C, Le Merrer M, Mathieu M, Konig R, Vigneron J, Weissenbach J, Petit C, Weil D (1997) Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Hum Mol Genet 6:2247–2255

    Article  CAS  PubMed  Google Scholar 

  • Arcot SS, Wang Z, Weber JL, Deininger PL, Batzer MA (1995) Alu repeats: a source for the genesis of primate microsatellites. Genomics 29:136–144

    Article  CAS  PubMed  Google Scholar 

  • Audrezet MP, Chen JM, Raguenes O, Chuzhanova N, Giteau K, Le Marechal C, Quere I, Cooper DN, Ferec C (2004) Genomic rearrangements in the CFTR gene: extensive allelic heterogeneity and diverse mutational mechanisms. Hum Mutat 23:343–357

    Article  CAS  PubMed  Google Scholar 

  • Badge RM, Alisch RS, Moran JV (2003) ATLAS: a system to selectively identify human-specific L1 insertions. Am J Hum Genet 72:823–838

    Article  CAS  PubMed  Google Scholar 

  • Batzer MA, Deininger PL (2002) Alu repeats and human genomic diversity. Nat Rev Genet 3:370–379

    Article  CAS  PubMed  Google Scholar 

  • Batzer MA, Kilroy GE, Richard PE, Shaikh TH, Desselle TD, Hoppens CL, Deininger PL (1990) Structure and variability of recently inserted Alu family members. Nucleic Acids Res 18:6793–6798

    CAS  PubMed  Google Scholar 

  • Batzer MA, Rubin CM, Hellmann-Blumberg U, Alegria-Hartman M, Leeflang EP, Stern JD, Bazan HA, Shaikh TH, Deininger PL, Schmid CW (1995) Dispersion and insertion polymorphism in two small subfamilies of recently amplified human Alu repeats. J Mol Biol 247:418–427

    Article  CAS  PubMed  Google Scholar 

  • Batzer MA, Deininger PL, Hellmann-Blumberg U, Jurka J, Labuda D, Rubin CM, Schmid CW, Zietkiewicz E, Zuckerkandl E (1996) Standardized nomenclature for Alu repeats. J Mol Evol 42:3–6

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp NJ, Makris M, Preston FE, Peake IR, Daly ME (2000) Major structural defects in the antithrombin gene in four families with type I antithrombin deficiency–partial/complete deletions and rearrangement of the antithrombin gene. Thromb Haemost 83:715–721

    CAS  PubMed  Google Scholar 

  • Bennett EA, Coleman LE, Tsui C, Pittard WS, Devine SE (2004) Natural genetic variation caused by transposable elements in humans. Genetics 168:933–951

    Article  CAS  PubMed  Google Scholar 

  • Boissinot S, Chevret P, Furano AV (2000) L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 17:915–928

    CAS  PubMed  Google Scholar 

  • Boissinot S, Entezam A, Young L, Munson PJ, Furano AV (2004) The insertional history of an active family of L1 retrotransposons in humans. Genome Res 14:1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Brouha B, Meischl C, Ostertag E, de Boer M, Zhang Y, Neijens H, Roos D, Kazazian HH Jr (2002) Evidence consistent with human L1 retrotransposition in maternal meiosis I. Am J Hum Genet 71:327–336

    Article  CAS  PubMed  Google Scholar 

  • Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci USA 100:5280–5285

    Google Scholar 

  • Carter AB, Salem AH, Hedges DJ, Keegan CN, Kimball B, Walker JA, Watkins WS, Jorde LB, Batzer MA (2004) Genome-wide analysis of the human Alu Yb-lineage. Hum Genomics 1:167–178

    CAS  PubMed  Google Scholar 

  • Chen JM, Chuzhanova N, Stenson PD, Ferec C, Cooper DN (2005) Meta-analysis of gross insertions causing human genetic disease: novel mutational mechanisms and the role of replication slippage. Hum Mutat 25:207–221

    Article  CAS  PubMed  Google Scholar 

  • Claverie-Martin F, Gonzalez-Acosta H, Flores C, Anton-Gamero M, Garcia-Nieto V (2003) De novo insertion of an Alu sequence in the coding region of the CLCN5 gene results in Dent’s disease. Hum Genet 113:480–485

    CAS  PubMed  Google Scholar 

  • Conley ME, Partain JD, Norland SM, Shurtleff SA, Kazazian HH Jr (2005) Two independent retrotransposon insertions at the same site within the coding region of BTK. Hum Mutat 25:324–325

    Article  Google Scholar 

  • Cordaux R, Hedges DJ, Batzer MA (2004) Retrotransposition of Alu elements: how many sources? Trends Genet 20:464–467

    Article  CAS  PubMed  Google Scholar 

  • Cost GJ, Boeke JD (1998) Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37:18081–18093

    Article  CAS  PubMed  Google Scholar 

  • Cost GJ, Feng Q, Jacquier A, Boeke JD (2002) Human L1 element target-primed reverse transcription in vitro. EMBO J 21:5899–5910

    Article  CAS  PubMed  Google Scholar 

  • Courseaux A, Nahon JL (2001) Birth of two chimeric genes in the Hominidae lineage. Science 291:1293–1297

    Article  CAS  PubMed  Google Scholar 

  • DeBerardinis RJ, Kazazian HH Jr (1988) Full-length L1 elements have arisen recently in the same 1-kb region of the gorilla and human genomes. J Mol Evol 47:292–301

    Google Scholar 

  • Deininger PL, Batzer MA (2002) Mammalian retroelements. Genome Res 12:1455–1465

    Article  CAS  PubMed  Google Scholar 

  • Deininger PL, Moran JV, Batzer MA, Kazazian HH Jr (2003) Mobile elements and mammalian genome evolution. Curr Opin Genet Dev 13:651–658

    CAS  PubMed  Google Scholar 

  • Dewannieux M, Esnault C, Heidmann T (2003) LINE-mediated retrotransposition of marked Alu sequences. Nat Genet 35:41–48

    CAS  PubMed  Google Scholar 

  • Divoky V, Indrak K, Mrug M, Brabec V, Huisman THJ, Prchal JT (1996) A novel mechanism of β thalassemia: the insertion of L1 retrotransposable element into β globin IVS II. Blood 88(Suppl 1):148a (abstract)

    Google Scholar 

  • Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH Jr (1991) Isolation of an active human transposable element. Science 254:1805–1808

    CAS  PubMed  Google Scholar 

  • Dombroski BA, Scott AF, Kazazian HH Jr (1993) Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc Natl Acad Sci USA 90:6513–6517

    Google Scholar 

  • Eickbush TH (2002) Repair by retrotransposition. Nat Genet 31:126–127

    Article  CAS  PubMed  Google Scholar 

  • Ejima Y, Yang L (2003) Trans mobilization of genomic DNA as a mechanism for retrotransposon-mediated exon shuffling. Hum Mol Genet 12:1321–1328

    Article  CAS  PubMed  Google Scholar 

  • Esnault C, Maestre J, Heidmann T (2000) Human LINE retrotransposons generate processed pseudogenes. Nat Genet 24:363–367

    Article  CAS  PubMed  Google Scholar 

  • Farley AH, Luning Prak ET, Kazazian HH Jr (2004) More active human L1 retrotransposons produce longer insertions. Nucleic Acids Res 32:502–510

    Google Scholar 

  • Feng Q, Moran JV, Kazazian HH Jr, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    Article  CAS  PubMed  Google Scholar 

  • Ganguly A, Dunbar T, Chen P, Godmilow L, Ganguly T (2003) Exon skipping caused by an intronic insertion of a young Alu Yb9 element leads to severe hemophilia A. Hum Genet 113:348–352

    Article  CAS  PubMed  Google Scholar 

  • Gilbert N, Lutz-Prigge S, Moran JV (2002) Genomic deletions created upon LINE-1 retrotransposition. Cell 110:315–325

    Article  CAS  PubMed  Google Scholar 

  • Goodier JL, Ostertag EM, Kazazian HH Jr (2000) Transduction of 3’-flanking sequences is common in L1 retrotransposition. Hum Mol Genet 9:653–657

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi G, Skowronski J, Singer MF (1984) Defining the beginning and end of KpnI family segments. EMBO J 3:1753–1759

    CAS  PubMed  Google Scholar 

  • Hagan CR, Sheffield RF, Rudin CM (2003) Human Alu element retrotransposition induced by genotoxic stress. Nat Genet 35:219–220

    Article  CAS  PubMed  Google Scholar 

  • Halling KC, Lazzaro CR, Honchel R, Bufill JA, Powell SM, Arndt CA, Lindor NM (1999) Hereditary desmoid disease in a family with a germline Alu I repeat mutation of the APC gene. Hum Hered 49:97–102

    Article  CAS  PubMed  Google Scholar 

  • Han JS, Szak ST, Boeke JD (2004) Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes. Nature 429:268–274

    Article  CAS  PubMed  Google Scholar 

  • Hassoun H, Coetzer TL, Vassiliadis JN, Sahr KE, Maalouf GJ, Saad ST, Catanzariti L, Palek J (1994) A novel mobile element inserted in the alpha spectrin gene: spectrin dayton. A truncated alpha spectrin associated with hereditary elliptocytosis. J Clin Invest 94:643–648

    CAS  PubMed  Google Scholar 

  • den Hollander AI, ten Brink JB, de Kok YJ, van Soest S, van den Born LI, van Driel MA, van de Pol DJ, Payne AM, Bhattacharya SS, Kellner U, Hoyng CB, Westerveld A, Brunner HG, Bleeker-Wagemakers EM, Deutman AF, Heckenlively JR, Cremers FP, Bergen AA (1999) Mutations in a human homologue of Drosophila crumbs cause retinitis pigmentosa (RP12). Nat Genet 23:217–221

    Article  CAS  PubMed  Google Scholar 

  • Holmes SE, Dombroski BA, Krebs CM, Boehm CD, Kazazian HH Jr (1994) A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet 7:143–148

    Article  CAS  PubMed  Google Scholar 

  • van den Hurk JA, van de Pol DJ, Wissinger B, van Driel MA, Hoefsloot LH, de Wijs IJ, van den Born LI, Heckenlively JR, Brunner HG, Zrenner E, Ropers HH, Cremers FP (2003) Novel types of mutation in the choroideremia (CHM) gene: a full-length L1 insertion and an intronic mutation activating a cryptic exon. Hum Genet 113:268–275

    Article  PubMed  Google Scholar 

  • Ishihara N, Yamada K, Yamada Y, Miura K, Kato J, Kuwabara N, Hara Y, Kobayashi Y, Hoshino K, Nomura Y, Mimaki M, Ohya K, Matsushima M, Nitta H, Tanaka K, Segawa M, Ohki T, Ezoe T, Kumagai T, Onuma A, Kuroda T, Yoneda M, Yamanaka T, Saeki M, Segawa M, Saji T, Nagaya M, Wakamatsu N (2004) Clinical and molecular analysis of Mowat-Wilson syndrome associated with ZFHX1B mutations and deletions at 2q22-q24.1. J Med Genet 41:387–393

    Google Scholar 

  • Jalanko A, Manninen T, Peltonen L (1995) Deletion of the C-terminal end of aspartylglucosaminidase resulting in a lysosomal accumulation disease: evidence for a unique genomic rearrangement. Hum Mol Genet 4:435–441

    CAS  PubMed  Google Scholar 

  • Janicic N, Pausova Z, Cole DE, Hendy GN (1995) Insertion of an Alu sequence in the Ca2+ -sensing receptor gene in familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Am J Hum Genet 56:880–886

    CAS  PubMed  Google Scholar 

  • Jurka J (1997) Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci USA 94:1872–1877

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Klonowski P, Dagman V, Pelton P (1996) CENSOR–a program for identification and elimination of repetitive elements from DNA sequences. Comput Chem 20:119–122

    Article  CAS  PubMed  Google Scholar 

  • Jurka J, Krnjajic M, Kapitonov VV, Stenger JE, Kokhanyy O (2002) Active Alu elements are passed primarily through paternal germlines. Theor Popul Biol 61:519–530

    PubMed  Google Scholar 

  • Jurka J, Kohany O, Pavlicek A, Kapitonov VV, Jurka MV (2004) Duplication, coclustering, and selection of human Alu retrotransposons. Proc Natl Acad Sci USA 101:1268–1272

    CAS  PubMed  Google Scholar 

  • Kapitonov V, Jurka J (1996) The age of Alu subfamilies. J Mol Evol 42:59–65

    CAS  PubMed  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH Jr, Goodier JL (2002) LINE drive. retrotransposition and genome instability. Cell 110:277–280

    Article  CAS  PubMed  Google Scholar 

  • Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE (1988) Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–166

    Article  CAS  PubMed  Google Scholar 

  • Kimberland ML, Divoky V, Prchal J, Schwahn U, Berger W, Kazazian HH Jr (1999) Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum Mol Genet 8:1557–1560

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y, Segawa M, Yoshioka M, Saito K, Osawa M, Hamano K, Sakakihara Y, Nonaka I, Nakagome Y, Kanazawa I, Nakamura Y, Tokunaga K, Toda T (1998) An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–392

    CAS  PubMed  Google Scholar 

  • Kolosha VO, Martin SL (2003) High-affinity, non-sequence-specific RNA binding by the open reading frame 1 (ORF1) protein from long interspersed nuclear element 1 (LINE-1). J Biol Chem 278:8112–8117

    Article  CAS  PubMed  Google Scholar 

  • Kondo-Iida E, Kobayashi K, Watanabe M, Sasaki J, Kumagai T, Koide H, Saito K, Osawa M, Nakamura Y, Toda T (1999) Novel mutations and genotype-phenotype relationships in 107 families with Fukuyama-type congenital muscular dystrophy (FCMD). Hum Mol Genet 8:2303–2309

    Article  CAS  PubMed  Google Scholar 

  • Korenberg JR, Rykowski MC (1988) Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53:391–400

    Article  CAS  PubMed  Google Scholar 

  • Kutsche K, Ressler B, Katzera HG, Orth U, Gillessen-Kaesbach G, Morlot S, Schwinger E, Gal A (2002) Characterization of breakpoint sequences of five rearrangements in L1CAM and ABCD1 (ALD) genes. Hum Mutat 19:526–535

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, Szustakowki J, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ; International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  PubMed  Google Scholar 

  • Lester T, McMahon C, Van Regemorter N, Jones A, Genet S (1997) X-linked immunodeficiency caused by insertion of Alu repeat sequences. J Med Genet 34(Supp1):S81 (abstract)

    Google Scholar 

  • Li X, Scaringe WA, Hill KA, Roberts S, Mengos A, Careri D, Pinto MT, Kasper CK, Sommer SS (2001) Frequency of recent retrotransposition events in the human factor IX gene. Hum Mutat 17:511–519

    Article  CAS  PubMed  Google Scholar 

  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH (1993) Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605

    CAS  PubMed  Google Scholar 

  • Mager DL, Henthorn PS, Smithies O (1985) A Chinese Gγ+ (Aγδβ)° thalassemia deletion: comparison to other deletions in the human β-globin gene cluster and sequence analysis of the breakpoints. Nucleic Acids Res 13:6559–6575

    CAS  PubMed  Google Scholar 

  • Martinez-Garay I, Ballesta MJ, Oltra S, Orellana C, Palomeque A, Molto MD, Prieto F, Martinez F (2003) Intronic L1 insertion and F268S, novel mutations in RPS6KA3 (RSK2) causing Coffin-Lowry syndrome. Clin Genet 64:491–496

    Article  CAS  PubMed  Google Scholar 

  • Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A (1991) Reverse transcriptase encoded by a human transposable element. Science 254:1808–1810

    CAS  PubMed  Google Scholar 

  • Meischl C, Boer M, Ahlin A, Roos D (2000) A new exon created by intronic insertion of a rearranged LINE-1 element as the cause of chronic granulomatous disease. Eur J Hum Genet 8:697–703

    Article  CAS  PubMed  Google Scholar 

  • Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J, Kinzler KW, Vogelstein B, Nakamura Y (1992) Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res 52:643–645

    CAS  PubMed  Google Scholar 

  • Miki Y, Katagiri T, Kasumi F, Yoshimoto T, Nakamura Y (1996) Mutation analysis in the BRCA2 gene in primary breast cancers. Nat Genet 13:245–247

    Article  CAS  PubMed  Google Scholar 

  • Moran JV, Gilbert N (2002) Mammalian LINE-1 retrotransposons and related elements. In: Craig N, Craggie R, Gellert M, Lambowitz A (eds) Mobile DNA II. ASM, Washington D.C., pp 836–869

    Google Scholar 

  • Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr (1996) High frequency retrotransposition in cultured mammalian cells. Cell 87:917–927

    Article  CAS  PubMed  Google Scholar 

  • Moran JV, DeBerardinis RJ, Kazazian HH Jr (1999) Exon shuffling by L1 retrotransposition. Science 283:1530–1534

    Google Scholar 

  • Morrish TA, Gilbert N, Myers JS, Vincent BJ, Stamato TD, Taccioli GE, Batzer MA, Moran JV (2002) DNA repair mediated by endonuclease-independent LINE-1 retrotransposition. Nat Genet 31:159–165

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Mukhopadhyay A, Banerjee D, Chandak GR, Ray K (2004) Molecular pathology of haemophilia B: identification of five novel mutations including a LINE 1 insertion in Indian patients. Haemophilia 10:259–263

    Article  CAS  PubMed  Google Scholar 

  • Muratani K, Hada T, Yamamoto Y, Kaneko T, Shigeto Y, Ohue T, Furuyama J, Higashino K (1991) Inactivation of the cholinesterase gene by Alu insertion: possible mechanism for human gene transposition. Proc Natl Acad Sci USA 88:11315–11319

    Google Scholar 

  • Mustajoki S, Ahola H, Mustajoki P, Kauppinen R (1999) Insertion of Alu element responsible for acute intermittent porphyria. Hum Mutat 13:431–438

    Article  CAS  PubMed  Google Scholar 

  • Myers JS, Vincent BJ, Udall H, Watkins WS, Morrish TA, Kilroy GE, Swergold GD, Henke J, Henke L, Moran JV, Jorde LB, Batzer MA (2002) A comprehensive analysis of recently integrated human Ta L1 elements. Am J Hum Genet 71:312–326

    CAS  PubMed  Google Scholar 

  • Narita N, Nishio H, Kitoh Y, Ishikawa Y, Ishikawa Y, Minami R, Nakamura H, Matsuo M (1993) Insertion of a 5’ truncated L1 element into the 3’ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest 91:1862–1867

    CAS  PubMed  Google Scholar 

  • Ohshima K, Hattori M, Yada T, Gojobori T, Sakaki Y, Okada N (2003) Whole-genome screening indicates a possible burst of formation of processed pseudogenes and Alu repeats by particular L1 subfamilies in ancestral primates. Genome Biol 4:R74

    Article  PubMed  Google Scholar 

  • Oldridge M, Zackai EH, McDonald-McGinn DM, Iseki S, Morriss-Kay GM, Twigg SR, Johnson D, Wall SA, Jiang W, Theda C, Jabs EW, Wilkie AO (1999) De novo alu-element insertions in FGFR2 identify a distinct pathological basis for Apert syndrome. Am J Hum Genet 64:446–461

    Article  CAS  PubMed  Google Scholar 

  • Ostertag EM, Kazazian HH Jr (2001a) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538

    Article  CAS  Google Scholar 

  • Ostertag EM, Kazazian HH Jr (2001b) Twin priming: a proposed mechanism for the creation of inversions in L1 retrotransposition. Genome Res 11:2059–2065

    Article  CAS  Google Scholar 

  • Ostertag EM, Goodier JL, Zhang Y, Kazazian HH Jr (2003) SVA elements are nonautonomous retrotransposons that cause disease in humans. Am J Hum Genet 73:1444–1451

    Article  CAS  PubMed  Google Scholar 

  • Otieno AC, Carter AB, Hedges DJ, Walker JA, Ray DA, Garber RK, Anders BA, Stoilova N, Laborde ME, Fowlkes JD, Huang CH, Perodeau B, Batzer MA (2004) Analysis of the human Alu Ya-lineage. J Mol Biol 342:109–118

    Article  CAS  PubMed  Google Scholar 

  • Ovchinnikov I, Troxel AB, Swergold GD (2001) Genomic characterization of recent human LINE-1 insertions: evidence supporting random insertion. Genome Res 11:2050–2058

    Article  CAS  PubMed  Google Scholar 

  • Ovchinnikov I, Rubin A, Swergold GD (2002) Tracing the LINEs of human evolution. Proc Natl Acad Sci USA 99:10522–10527

    Google Scholar 

  • Pavlicek A, Paces J, Zika R, Hejnar J (2002) Length distribution of long interspersed nucleotide elements (LINEs) and processed pseudogenes of human endogenous retroviruses: implications for retrotransposition and pseudogene detection. Gene 300:189–194

    Article  CAS  PubMed  Google Scholar 

  • Pickeral OK, Makalowski W, Boguski MS, Boeke JD (2000) Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res 10:411–415

    Article  CAS  PubMed  Google Scholar 

  • Read LR, Raynard SJ, Ruksc A, Baker MD (2004) Gene repeat expansion and contraction by spontaneous intrachromosomal homologous recombination in mammalian cells. Nucleic Acids Res 32:1184–1196

    Google Scholar 

  • Rohrer J, Minegishi Y, Richter D, Eguiguren J, Conley ME (1999) Unusual mutations in Btk: an insertion, a duplication, an inversion, and four large deletions. Clin Immunol 90:28–37

    Article  CAS  PubMed  Google Scholar 

  • Roy AM, Carroll ML, Nguyen SV, Salem AH, Oldridge M, Wilkie AO, Batzer MA, Deininger PL (2000) Potential gene conversion and source genes for recently integrated Alu elements. Genome Res 10:1485–1495

    Article  CAS  PubMed  Google Scholar 

  • Roy-Engel AM, Carroll ML, Vogel E, Garber RK, Nguyen SV, Salem AH, Batzer MA, Deininger PL (2001) Alu insertion polymorphisms for the study of human genomic diversity. Genetics 159:279–290

    CAS  PubMed  Google Scholar 

  • Roy-Engel AM, Salem AH, Oyeniran OO, Deininger L, Hedges DJ, Kilroy GE, Batzer MA, Deininger PL (2002) Active Alu element “A-tails”: size does matter. Genome Res 12:1333–1344

    Article  CAS  PubMed  Google Scholar 

  • Rozmahel R, Heng HH, Duncan AM, Shi XM, Rommens JM, Tsui LC (1997) Amplification of CFTR exon 9 sequences to multiple locations in the human genome. Genomics 45:554–561

    Article  CAS  PubMed  Google Scholar 

  • Salem AH, Kilroy GE, Watkins WS, Jorde LB, Batzer MA (2003a) Recently integrated Alu elements and human genomic diversity. Mol Biol Evol 20:1349–1361

    Article  CAS  Google Scholar 

  • Salem AH, Myers JS, Otieno AC, Watkins WS, Jorde LB, Batzer MA (2003b) LINE-1 preTa elements in the human genome. J Mol Biol 326:1127–1146

    Article  CAS  Google Scholar 

  • Salem AH, Ray DA, Batzer MA (2005) Identity by descent and DNA sequence variation of human SINE and LINE elements. Cytogenet Genome Res 108:63–72

    Article  CAS  PubMed  Google Scholar 

  • Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH Jr (1997) Many human L1 elements are capable of retrotransposition. Nat Genet 16:37–43

    Article  CAS  PubMed  Google Scholar 

  • Schwahn U, Lenzner S, Dong J, Feil S, Hinzmann B, van Duijnhoven G, Kirschner R, Hemberger M, Bergen AA, Rosenberg T, Pinckers AJ, Fundele R, Rosenthal A, Cremers FP, Ropers HH, Berger W (1998) Positional cloning of the gene for X-linked retinitis pigmentosa 2. Nat Genet 19:327–332

    Article  CAS  PubMed  Google Scholar 

  • Scott AF, Schmeckpeper BJ, Abdelrazik M, Comey CT, O’Hara B, Rossiter JP, Cooley T, Heath P, Smith KD, Margolet L (1987) Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence. Genomics 1:113–125

    Article  CAS  PubMed  Google Scholar 

  • Segal Y, Peissel B, Renieri A, de Marchi M, Ballabio A, Pei Y, Zhou J (1999) LINE-1 elements at the sites of molecular rearrangements in Alport syndrome-diffuse leiomyomatosis. Am J Hum Genet 64:62–69

    Article  CAS  PubMed  Google Scholar 

  • Sheen FM, Sherry ST, Risch GM, Robichaux M, Nasidze I, Stoneking M, Batzer MA, Swergold GD (2000) Reading between the LINEs: human genomic variation induced by LINE-1 retrotransposition. Genome Res 10:1496–1508

    Article  CAS  PubMed  Google Scholar 

  • Skowronski J, Fanning TG, Singer MF (1988) Unit-length line-1 transcripts in human teratocarcinoma cells. Mol Cell Biol 8:1385–1397

    CAS  PubMed  Google Scholar 

  • Smit AF, Toth G, Riggs AD, Jurka J (1995) Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences. J Mol Biol 246:401–417

    Article  CAS  PubMed  Google Scholar 

  • Soriano P, Meunier-Rotival M, Bernardi G (1983) The distribution of interspersed repeats is nonuniform and conserved in the mouse and human genomes. Proc Natl Acad Sci USA 80:1816–1820

    Google Scholar 

  • Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, Abeysinghe S, Krawczak M, Cooper DN (2003) Human Gene Mutation Database (HGMD): 2003 update. Hum Mutat 21:577–581

    Article  CAS  PubMed  Google Scholar 

  • Stoppa-Lyonnet D, Carter PE, Meo T, Tosi M (1990) Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc Natl Acad Sci USA 87:1551–1555

    Google Scholar 

  • Strichman-Almashanu LZ, Lee RS, Onyango PO, Perlman E, Flam F, Frieman MB, Feinberg AP (2002) A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res 12:543–554

    CAS  PubMed  Google Scholar 

  • Su LK, Steinbach G, Sawyer JC, Hindi M, Ward PA, Lynch PM (2000) Genomic rearrangements of the APC tumor-suppressor gene in familial adenomatous polyposis. Hum Genet 106:101–107

    CAS  PubMed  Google Scholar 

  • Sukarova E, Dimovski AJ, Tchacarova P, Petkov GH, Efremov GD (2001) An Alu insert as the cause of a severe form of hemophilia A. Acta Haematol 106:126–129

    Article  CAS  PubMed  Google Scholar 

  • Symer DE, Connelly C, Szak ST, Caputo EM, Cost GJ, Parmigiani G, Boeke JD (2002) Human L1 retrotransposition is associated with genetic instability in vivo. Cell 110:327–338

    Article  CAS  PubMed  Google Scholar 

  • Szak ST, Pickeral OK, Makalowski W, Boguski MS, Landsman D, Boeke JD (2002) Molecular archeology of L1 insertions in the human genome. Genome Biol 3:research0052.1–18

    Article  PubMed  Google Scholar 

  • Tighe PJ, Stevens SE, Dempsey S, Le Deist F, Rieux-Laucat F, Edgar JD (2002) Inactivation of the Fas gene by Alu insertion: retrotransposition in an intron causing splicing variation and autoimmune lymphoproliferative syndrome. Genes Immunol 3(Suppl 1):S66–S70

    Article  CAS  Google Scholar 

  • Torrents D, Suyama M, Zdobnov E, Bork P (2003) A genome-wide survey of human pseudogenes. Genome Res 13:2559–2567

    Article  CAS  PubMed  Google Scholar 

  • Vanin EF (1985) Processed pseudogenes: characteristics and evolution. Annu Rev Genet 19:253–272

    Article  CAS  PubMed  Google Scholar 

  • Viale A, Ortola C, Richard F, Vernier P, Presse F, Schilling S, Dutrillaux B, Nahon JL (1998) Emergence of a brain-expressed variant melanin-concentrating hormone gene during higher primate evolution: a gene “in search of a function”. Mol Biol Evol 15:196–214

    CAS  PubMed  Google Scholar 

  • Vidaud D, Vidaud M, Bahnak BR, Siguret V, Gispert Sanchez S, Laurian Y, Meyer D, Goossens M, Lavergne JM (1993) Haemophilia B due to a de novo insertion of a human-specific Alu subfamily member within the coding region of the factor IX gene. Eur J Hum Genet 1:30–36

    CAS  PubMed  Google Scholar 

  • Vincent BJ, Myers JS, Ho HJ, Kilroy GE, Walker JA, Watkins WS, Jorde LB, Batzer MA (2003) Following the LINEs: an analysis of primate genomic variation at human-specific LINE-1 insertion sites. Mol Biol Evol 20:1338–1348

    Article  CAS  PubMed  Google Scholar 

  • Voliva CF, Jahn CL, Comer MB, Hutchison CA III, Edgell MH (1983) The L1Md long interspersed repeat family in the mouse: almost all examples are truncated at one end. Nucleic Acids Res 11:8847–8859

    Google Scholar 

  • Wallace MR, Andersen LB, Saulino AM, Gregory PE, Glover TW, Collins FS (1991) A de novo Alu insertion results in neurofibromatosis type 1. Nature 353:864–866

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Lerer I, Gueta Z, Sagi M, Kadouri L, Peretz T, Abeliovich D (2001) A deletion/insertion mutation in the BRCA2 gene in a breast cancer family: a possible role of the Alu-polyA tail in the evolution of the deletion. Genes Chromosomes Cancer 31:91–95

    Article  CAS  PubMed  Google Scholar 

  • van de Water N, Williams R, Ockelford P, Browett P (1998) A 20.7 kb deletion within the factor VIII gene associated with LINE-1 element insertion. Thromb Haemost 79:938–942

    PubMed  Google Scholar 

  • Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV (2001) Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 21:1429–1439

    Article  CAS  PubMed  Google Scholar 

  • Wilund KR, Yi M, Campagna F, Arca M, Zuliani G, Fellin R, Ho YK, Garcia JV, Hobbs HH, Cohen JC (2002) Molecular mechanisms of autosomal recessive hypercholesterolemia. Hum Mol Genet 11:3019–3030

    Article  CAS  PubMed  Google Scholar 

  • Wulff K, Gazda H, Schroder W, Robicka-Milewska R, Herrmann FH (2000) Identification of a novel large F9 gene mutation-an insertion of an Alu repeated DNA element in exon e of the factor 9 gene. Hum Mutat 15:299

    Article  CAS  Google Scholar 

  • Yoshida K, Nakamura A, Yazaki M, Ikeda S, Takeda S (1998) Insertional mutation by transposable element, L1, in the DMD gene results in X-linked dilated cardiomyopathy. Hum Mol Genet 7:1129–1132

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Gerstein M (2004) Large-scale analysis of pseudogenes in the human genome. Curr Opin Genet Dev 14:328–335

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Dipple KM, Vilain E, Huang BL, Finlayson G, Therrell BL, Worley K, Deininger P, McCabe ER (2000) AluY insertion (IVS4-52ins316 alu) in the glycerol kinase gene from an individual with benign glycerol kinase deficiency. Hum Mutat 15:316–323

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Harrison PM, Liu Y, Gerstein M (2003) Millions of years of evolution preserved: a comprehensive catalog of the processed pseudogenes in the human genome. Genome Res 13:2541–2558

    Article  CAS  PubMed  Google Scholar 

  • Zietkiewicz E, Richer C, Sinnett D, Labuda D (1998) Monophyletic origin of Alu elements in primates. J Mol Evol 47:172–182

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the many original authors who have reported human disease-associated L1 retrotransposons. We are especially grateful to Frans P.M. Cremers (Nijmegen, Netherlands), Francisco Martínez (Valencia, Spain), Tatsushi Toda (Osaka, Japan), Karin Wulff (Greifswald, Germany), and Kenichiro Yamada (Aichi, Japan) for providing further information on reported mutations. This work was supported by the INSERM (Institut National de la Santé et de la Recherche Médicale), France. DNC wishes to acknowledge the financial assistance of Celera Genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Min Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, JM., Stenson, P.D., Cooper, D.N. et al. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum Genet 117, 411–427 (2005). https://doi.org/10.1007/s00439-005-1321-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-005-1321-0

Keywords

Navigation