Skip to main content
Log in

Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch): insights from in silico analysis of nuclear and organellar genomes

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Many genes have been lost from the prokaryote plastidial genome during the early events of endosymbiosis in eukaryotes. Some of them were definitively lost, but others were relocated and functionally integrated to the host nuclear genomes through serial events of gene transfer during plant evolution. In gymnosperms, plastid genome sequencing has revealed the loss of ndh genes from several species of Gnetales and Pinaceae, including Norway spruce (Picea abies). This study aims to trace the ndh genes in the nuclear and organellar Norway spruce genomes. The plastid genomes of higher plants contain 11 ndh genes which are homologues of mitochondrial genes encoding subunits of the proton-pumping NADH-dehydrogenase (nicotinamide adenine dinucleotide dehydrogenase) or complex I (electron transport chain). Ndh genes encode 11 NDH polypeptides forming the Ndh complex (analogous to complex I) which seems to be primarily involved in chloro-respiration processes. We considered ndh genes from the plastidial genome of four gymnosperms (Cryptomeria japonica, Cycas revoluta, Ginkgo biloba, Podocarpus totara) and a single angiosperm species (Arabidopsis thaliana) to trace putative homologs in the nuclear and organellar Norway spruce genomes using tBLASTn to assess the evolutionary fate of ndh genes in Norway spruce and to address their genomic location(s), structure, integrity and functionality. The results obtained from tBLASTn were subsequently analyzed by performing homology search for finding ndh specific conserved domains using conserved domain search. We report the presence of non-functional plastid ndh gene fragments, excepting ndhE and ndhG genes, in the nuclear genome of Norway spruce. Regulatory transcriptional elements like promoters, TATA boxes and enhancers were detected in the upstream regions of some ndh fragments. We also found transposable elements in the flanking regions of few ndh fragments suggesting nuclear rearrangements in those regions. These evidences support the hypothesis that, at least in Picea, ndh translocations from the plastid to the nuclear genome have occurred, and that there might have been a functional machinery at some time during evolution to accommodate them within a nuclear-encoded environment, or attempts to form it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Blazier J, Guisinger MM, Jansen RK (2011) Recent loss of plastid-encoded ndh genes within Erodium (Geraniaceae). Plant Mol Biol 76:263–272

    Article  CAS  Google Scholar 

  • Bock R, Timmis JN (2008) Reconstructing evolution: gene transfer from plastids to the nucleus. BioEssays 30:556–566

    Article  CAS  PubMed  Google Scholar 

  • Braukmann TWA, Kuzmina M, Stefanovic S (2009) Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary significance for the seed plant phylogeny. Curr Genet 55:323–337

    Article  CAS  PubMed  Google Scholar 

  • Braukmann T, Kuzmina M, Stefanovic S (2013) Plastid genome evolution across the genus Cuscuta (Convolvulaceae): two clades within subgenus Grammica exhibit extensive gene loss. J Exp Bot 64:977–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bungard RA (2004) Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. BioEssays 26:235–247

    Article  CAS  PubMed  Google Scholar 

  • Casano LM, Zapata JM, Martin M, Sabater B (2000) Chlororespiration and poising of cyclic electron transport—plastoquinone as electron transporter between thylakoid NADH dehydrogenase and peroxidase. J Biol Chem 275:942–948

    Article  CAS  PubMed  Google Scholar 

  • Chang CC, Lin HC, Lin IP, Chow TY, Chen HH, Chen WH, Cheng CH, Lin CY, Liu SM, Chang CC, Chaw SM (2006) The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. Mol Biol Evol 23:279–291

    Article  CAS  PubMed  Google Scholar 

  • Chaw SM, Parkinson CL, Cheng YC, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 97:4086–4091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delannoy E, Fujii S, des Francs-Small CC, Brundrett M, Small I (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28:2077–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, Martin W, Dagan T (2008) Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25:748–761

    Article  CAS  PubMed  Google Scholar 

  • Haberhausen G, Zetsche K (1994) Functional loss of all Ndh genes in an otherwise relatively unaltered plastid genome of the Holoparasitic flowering plant Cuscuta reflexa. Plant Mol Biol 24:217–222

    Article  CAS  PubMed  Google Scholar 

  • Krause K (2008) From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54:111–121

    Article  CAS  PubMed  Google Scholar 

  • Li W, Yang W, Wang XJ (2013) Pseudogenes: pseudo or real functional elements? J Genet Genomics 40:171–177

    Article  PubMed  Google Scholar 

  • Lin CS, Chen JJW, Huang YT, Chan MT, Daniell H, Chang WJ, Hsu CT, Liao DC, Wu FH, Lin SY, Liao CF, Deyholos MK, Wong GKS, Albert VA, Chou ML, Chen CY, Shih MC (2015) The location and translocation of ndh genes of chloroplast origin in the Orchidaceae family. Sci Rep 5, Article no. 9040

  • Logacheva MD, Schelkunov MI, Penin AA (2011) Sequencing and analysis of plastid genome in mycoheterotrophic orchid Neottia nidus-avis. Genome Biol Evol 3:1296–1303

    Article  PubMed  PubMed Central  Google Scholar 

  • Maier RM, Neckermann K, Igloi GL, Kossel H (1995) Complete sequence of the maize chloroplast genome—gene content, hotspots of divergence and fine-tuning of genetic information by transcript editing. J Mol Biol 251:614–628

    Article  CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin W (2003) Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc Natl Acad Sci USA 100:8612–8614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin M, Sabater B (2010) Plastid ndh genes in plant evolution. Plant Physiol Biochem 48:636–645

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Stoebe B, Goremykin V, Hansmann S, Hasegawa M, Kowallik KV (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393:162–165

    Article  CAS  PubMed  Google Scholar 

  • Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mccoy SR, Kuehl JV, Boore JL, Raubeson LA (2008) The complete plastid genome sequence of Welwitschia mirabilis: an unusually compact plastome with accelerated divergence rates. BMC Evol Biol 8:130

  • Millen RS, Olmstead RG, Adams KL, Palmer JD, Lao NT, Heggie L, Kavanagh TA, Hibberd JM, Giray JC, Morden CW, Calie PJ, Jermiin LS, Wolfe KH (2001) Many parallel losses of infA from chloroplast DNA during angiosperm evolution with multiple independent transfers to the nucleus. Plant Cell 13:645–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neyland R, Urbatsch LE (1996) The ndhF chloroplast gene detected in all vascular plant divisions. Planta 200:273–277

    Article  CAS  PubMed  Google Scholar 

  • Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445

    Article  CAS  PubMed  Google Scholar 

  • Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, Vezzi F, Delhomme N, Giacomello S, Alexeyenko A, Vicedomini R, Sahlin K, Sherwood E, Elfstrand M, Gramzow L, Holmberg K, Hallman J, Keech O, Klasson L, Koriabine M, Kucukoglu M, Kaller M, Luthman J, Lysholm F, Niittyla T, Olson A, Rilakovic N, Ritland C, Rossello JA, Sena J, Svensson T, Talavera-Lopez C, Theissen G, Tuominen H, Vanneste K, Wu ZQ, Zhang B, Zerbe P, Arvestad L, Bhalerao R, Bohlmann J, Bousquet J, Gil RG, Hvidsten TR, de Jong P, MacKay J, Morgante M, Ritland K, Sundberg B, Thompson SL, Van de Peer Y, Andersson B, Nilsson O, Ingvarsson PK, Lundeberg J, Jansson S (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584

    Article  CAS  PubMed  Google Scholar 

  • Palmer JD (1991) Plastid chromosomes: structure and evolution. Mol Biol Plast 7:5–53

    Article  Google Scholar 

  • Pan IC, Liao DC, Wu FH, Daniell H, Singh ND, Chang C, Shih MC, Chan MT, Lin CS (2012) Complete chloroplast genome sequence of an orchid model plant candidate: Erycina pusilla apply in tropical Oncidium breeding. Plos One 7:e34738

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550

    Article  CAS  PubMed  Google Scholar 

  • Peredo EL, King UM, Les DH (2012) The plastid genome of Najas flexilis: adaptation to submersed environments is accompanied by the complete loss of the NDH complex in an aquatic angiosperm. Plos One 8:e68591

  • Podlaha O, Zhang J (2010) Pseudogenes and their evolution. Wiley, New York

    Book  Google Scholar 

  • Rokas A, Holland PW (2000) Rare genomic changes as a tool for phylogenetics. Trends Ecol Evol 15:454–459

    Article  PubMed  Google Scholar 

  • Ruhlman TA, Chang WJ, Chen JJW, Huang YT, Chan MT, Zhang J, Liao DC, Blazier JC, Jin XH, Shih MC, Jansen RK, Lin CS (2015) NDH expression marks major transitions in plant evolution and reveals coordinate intracellular gene loss. BMC Plant Biol 15:100

  • Sazanov LA, Burrows PA, Nixon PJ (1998) The plastid ndh genes code for an NADH-specific dehydrogenase: isolation of a complex I analogue from pea thylakoid membranes. Proc Natl Acad Sci USA 95:1319–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahmuradov IA, Gammerman AJ, Hancock JM, Bramley PM, Solovyev VV (2003) PlantProm: a database of plant promoter sequences. Nucleic Acids Res 31(1):114–117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugita C, Ogata K, Shikata M, Jikuya H, Takano J, Furumichi M, Kanehisa M, Omata T, Sugiura M, Sugita M (2007) Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization. Photosynth Res 93:55–67

    Article  CAS  PubMed  Google Scholar 

  • Tutar Y (2012) Pseudogenes. Comp Funct Genomics 2012:424526

    Article  PubMed  PubMed Central  Google Scholar 

  • Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black Pine Pinus thunbergii. Proc Natl Acad Sci USA 91:9794–9798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickett NJ, Zhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, dePamphilis CW, Boore JL, Goffinet B (2008) Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol Biol Evol 25:393–401

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu CS, Wang YN, Liu SM, Chaw SM (2007) Chloroplast genome (cpDNA) of Cycas taitungensis and 56 cp protein-coding genes of Gnetum parvifolium: insights into cpDNA evolution and phylogeny of extant seed plants. Mol Biol Evol 24:1366–1379

    Article  CAS  PubMed  Google Scholar 

  • Wu FH, Chan MT, Liao DC, Hsu CT, Lee YW, Daniell H, Duvall MR, Lin CS (2010) Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol 10:68

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge Andrea Zuccolo for support in the transposable elements (TEs) analysis. We also acknowledge the Swedish research Council (VR) and the Swedish Governmental Agency for Innovation Systems (VINNOVA) for supporting the infrastructure to maintain P. abies genome assembly as publically available at Umeå Plant Science Centre (UPSC), Umeå, Sweden. S.S.R. postdoc position was granted by the Kempe foundation. This research was partly supported by funds from the Spanish Ministry of Education and Science (Project CGL2010-22347-C02-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonali Sachin Ranade.

Ethics declarations

Funding

This study was funded by Swedish research Council (VR), the Swedish Governmental Agency for Innovation Systems (VINNOVA), Kempe foundation and the Spanish Ministry of Education and Science (Project CGL2010-22347-C02-01).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by B. F. Lang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranade, S.S., García-Gil, M.R. & Rosselló, J.A. Non-functional plastid ndh gene fragments are present in the nuclear genome of Norway spruce (Picea abies L. Karsch): insights from in silico analysis of nuclear and organellar genomes. Mol Genet Genomics 291, 935–941 (2016). https://doi.org/10.1007/s00438-015-1159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-015-1159-7

Keywords

Navigation