Skip to main content

Advertisement

Log in

Antiplasmodial activity-aided isolation and identification of quercetin-4’-methyl ether in Chromolaena odorata leaf fraction with high activity against chloroquine-resistant Plasmodium falciparum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present study was undertaken to evaluate the antiplasmodial activity of Chromolaena odorata leaf extract and gradient fractions through in vivo and in vitro tests, aimed at identifying its antiplasmodial constituents. Sub-fractions obtained from the most active gradient fraction were further tested for cytotoxicity against THP-1 cells, chloroquine-sensitive (HB3) and chloroquine-resistant (FCM29) Plasmodium falciparum. Our results showed the dichloromethane gradient fraction was most effective, significantly (P < 0.05) suppressing infection by 99.46 % at 100 mg/kg body weight. Amongst its 13 sub-fractions (DF1–DF13), DF11 was highly active, with IC50 of 4.8 and 6.74 μg/ml against P. falciparum HB3 and FCM29, respectively. Cytotoxicity of DF11 was estimated to be above 50 μg/ml, and its separation by column chromatography yielded a flavonoid which was characterized as 3, 5, 7, 3’ tetrahydroxy-4’-methoxyflavone from its spectroscopic data. It significantly suppressed infection (65.43–81.48 %) in mice at 2.5–5 mg/kg doses and compared favourably with the effects of chloroquine and artemisinin. It may therefore serve as a useful phytochemical and antiplasmodial activity marker of C. odorata leaves, which exhibit potential for development as medicine against malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barua RN, Sharma RP, Thyagarajan G, Hertz W (1978) Flavonoids of Chromolaena odorata. Phytochemistry 17(10):1807–1808

    Article  CAS  Google Scholar 

  • Bedi G, Tonzibo ZF, Chopard C, Mahy JP, N’Guessan TY (2004) Study of the anti-pain effects of Chromolaena odorata and Mikania cordata essential oils by action on soybean lipoxygenase L-1. Phys Chem News 15(1):124–127

    CAS  Google Scholar 

  • Bennet TN, Paguio M, Gligorijevic B, Seudieu C. Kosar AD, Davidson E, Roepe PD (2004) Novel, rapid and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrob Agents Chemother 48(5):1807–1810

  • Bilia AR, Lazari D, Messori L, Taglioli V, Temperin C, Vincieri FF (2002) Simple and rapid physic-chemical methods to examine action of antimalarial drugs with hemin: its application to Artemisia annua and its constituents. Life Sci 70:769–778

    Article  CAS  PubMed  Google Scholar 

  • Bose PK, Chakrabarti P, Chakravarti S, Dutta SP, Barua AK (1973) Flavonoid constituents of Eupatorium odoratum. Phytochemistry 12:667–668

    Article  CAS  Google Scholar 

  • Brusotti G, Cesari I, Dentamaro A, Caccialanza G, Massolini G (2014) Isolation and characterization of bioactive compounds from plant resources: the role of analysis in the ethnopharmacological approach. J Pharm Biomed Anal 87:218–228

    Article  CAS  PubMed  Google Scholar 

  • Burkill HM (1985) The useful plants of West tropical Africa, vol 1. Royal boatanic Gardens, Kew

    Google Scholar 

  • Cimanga RK, Tona GL, Kambu OK, Mesia GK, Muyembe JJT, Apers S et al (2009) Antimalarial, antiamoebic and cytotoxic activities of some extracts and isolated constituents from the leaves of Morinda morindoides (Baker) Milne-Redh. (Rubiaceae). Recent Prog Med Plants 25:225–242

    CAS  Google Scholar 

  • Ferreira JF, Luthria DL, Sasaki T, Heyerick A (2010) Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 15(5):3135–3170

    Article  CAS  PubMed  Google Scholar 

  • Ganesh D, Fuehrer HP, Starzengrüber P, Swoboda P, Khan WA, Reismann JA et al (2012) Antiplasmodial activity of flavonol quercetin and its analogues in Plasmodium falciparum: evidence from clinical isolates in Bangladesh and standardized parasite clones. Parasitol Res 110(6):2289–2295

    Article  PubMed  Google Scholar 

  • Garcia LS (2010) Malaria. Clin Lab Med 30:93–129

    Article  PubMed  Google Scholar 

  • Kirmizibekmez H, Calis I, Perozzo R, Brun R, Donmez AA, Linden A et al (2004) Inhibiting activities of the secondary metabolites of Phlomis brunneogaleata against parasitic protozoa and plasmodial enoyl-ACP reductase, a crucial enzyme in fatty acid biosynthesis. Planta Med 70:711

    Article  CAS  PubMed  Google Scholar 

  • Ling B, Zhang M, Pang X (2003) Biological activities of the volatile oil from Chromolaena odorata on fungi and insects and its chemical constituent. Tianran Chanwu Yanjiu Yu Kaifa 15(3):183–187

    CAS  Google Scholar 

  • Ling SK, Pisar M, Man S (2007) Platelet-activating factor (PAF) receptor binding antagonist activity of the methanol extracts and isolated flavonoids from Chromolaena odorata (L.) King and Robinson. Biol Pharm Bull 30(6):1150–1152

    Article  CAS  PubMed  Google Scholar 

  • Lorke D (1983) A new approach to practical acute toxicity testing. Arch Toxicol 54:275–287

    Article  CAS  PubMed  Google Scholar 

  • Moalin M, van Strijdonck GP, Bast A, Haenen GR (2012) Competition between ascorbate and glutathione for the oxidized form of methylated quercetin metabolites and analogues: tamarixetin, 4′O-methylquercetin, has the lowest thiol reactivity. J Agric Food Chem 60(36):9292–9297

    Article  CAS  PubMed  Google Scholar 

  • Myhrstad MCW, Carlsen H, Nordstrom O, Blomhoff R, Moskaug JǾ (2002) Flavonoids increase the cellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radic Biol Med 32:386–393

    Article  CAS  PubMed  Google Scholar 

  • National Institute of Health (2011) Guide for the care and use of laboratory animals. http://oacu.od.nih.gov/regs/guide/guide_2011.pdf. Accessed 25 Nov 2013

  • Nguyen XD, Le KB, Leclercq PAJ (1992) The constituents of the leaf oil of Chromolaena odorata (L.) R. M. King and H. Robinson from Vietnam. Essent Oil Res 4(3):309–310

    Article  Google Scholar 

  • Nicolini F, Burmistrova O, Marrero MT, Torres F, Hernández C, Quintana J, Estévez F (2013) Induction of G(2) /M phase arrest and apoptosis by the flavonoid tamarixetin on human leukemia cells. Mol Carcinog. doi:10.1002/mc.22055

    PubMed  Google Scholar 

  • Ogbonnia SO, Mbaka GO, Anyika EN, Osegbo OM, Igbokwe NH (2010) Evaluation of acute toxicity in mice and subchronic toxicity of hydroethanolic extract of Chromolaena odorata (L.) King and Robinson (Fam. Asteraceae) in rats. Agric Biol N Am 1(5):859–865

    Article  Google Scholar 

  • Omodeo-Salè F, Cortelezzi L, Basilico N, Casagrande M, Sparatore A, Taramelli D (2009) Novel antimalarial aminoquinolines: heme binding and effects on normal or Plasmodium falciparum-parasitized human erythrocytes. Antimicrob Agents Chemother 53(10):4339–4344

    Article  PubMed Central  PubMed  Google Scholar 

  • Peters W, Robinson BL, Tovey G, Rossier JC, Jefford CW (1993) The chemotherapy of rodent malaria. I. The activities of some synthetic 1, 2, 4 - trioxanes against chloroquine-sensitive and chloroquine resistant parasites. Part 3: Observations on ‘Fenozan-50F’ a di-fluorated 3,3′-spirocyclopentane 1,2,4-trioxane. Ann Trop Med Parasitol 87:111–123

    CAS  PubMed  Google Scholar 

  • Phan T-T, Wang L, See P, Grayer RJ, Chan S-Y, Lee ST (2001) Phenolic compounds of Chromolaena odorata protect cultured skin cells from oxidative damage: implication for cutaneous wound healing. Biol Pharm Bull 24(12):1373–1379

    Article  CAS  PubMed  Google Scholar 

  • Pisutthanan N, Liawruangrath S, Bremner JB, Liawruangrath B (2005) Chemical constituents and biological activities of Chromolaena odorata. Chiang Mai J Sci 32(2):139–148

    CAS  Google Scholar 

  • Roepe PD (2014) To kill or not to kill, that is the question: cytocidal antimalarial drug resistance. Trends Parasitol 30(3):130–135

    Article  CAS  PubMed  Google Scholar 

  • Springfield EP, Eagles PKF, Scott G (2005) Quality assessment of South African herbal medicines by means of HPLC fingerprinting. J Ethnopharmacol 101:75–83

    Article  CAS  PubMed  Google Scholar 

  • Srinivasa RK, Chaudhury PK, Pradhan A (2010) Evaluation of anti-oxidant activities and total phenolic content of Chromolaena odorata. Food Chem Toxicol 48(2):729–732

    Article  Google Scholar 

  • Suksamram A, Chotipong A, Suavansri T, Boongird S, Timsuksai P, Vimuttipong S, Chuaynugul A (2004) Antimycobacterial activity and cytotoxicity of flavonoids from the flowers of Chromolaena odorata. Arch Pharm Res 27(5):507–511

    Article  Google Scholar 

  • Teffo LS, Aderogba MA, Eloff JN (2010) Antibacterial and antioxidant activities of four Kaempferol methyl ethers isolated from Dodonaea viscosa Jacq. Var. angustifolia leaf extracts. South African Journal of Botany 76(1):25–29

  • Trager W, Jensen JB (1978) Cultivation of malarial parasites. Nature 273:621–622

    Article  CAS  PubMed  Google Scholar 

  • Velasco-Alinsug MP, Rivero GC, Quibuyen TAO (2005) Isolation of mercury-binding peptides in vegetative parts of Chromolaena odorata. Z Naturforsch C J Biosci 60(3/4):252–259

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Ranarivelo Lalasoanirina and Ratsimbasson Michel of CNARP Madagascar for assistance in conducting the antiplasmodial assays. Ezenyi IC is thankful to Dr Swati Joshi, Dr Dhiman Sarkar, and Dr Sourav Pal of the National Chemical Laboratory Pune and to the Government of India for the RTFDCS fellowship. We also acknowledge Dr. S. Okhale and Mr Abu Garba for conducting HPLC fingerprinting and melting point analysis, respectively. The study was supported by funds from L’Oreal-UNESCO regional fellowship for women in science, awarded to Ezenyi IC.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. C. Ezenyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezenyi, I.C., Salawu, O.A., Kulkarni, R. et al. Antiplasmodial activity-aided isolation and identification of quercetin-4’-methyl ether in Chromolaena odorata leaf fraction with high activity against chloroquine-resistant Plasmodium falciparum . Parasitol Res 113, 4415–4422 (2014). https://doi.org/10.1007/s00436-014-4119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-4119-y

Keywords

Navigation