Skip to main content

Advertisement

Log in

Anti-Trichomonas vaginalis activity from triterpenoid derivatives

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Trichomonas vaginalis is a flagellated parasite that causes trichomonosis, the most common non-viral sexually transmitted disease (STD) in the world. Worryingly, trichomonosis is associated to increased transmission of HIV. Due to high frequency of the infection during pregnancy and the development of metronidazole-resistant isolates, therapeutic alternatives to 5-nitroimidazole are being searched. Triterpenes are natural products presenting several biological activities such as anti-protozoal activity. The aim of this study was to evaluate the in vitro anti-T. vaginalis activity from betulinic and ursolic acids, as well as semisynthetic derivatives obtained. Compounds obtained from betulinic acid presented better activity than those from ursolic acid. Piperazine derivatived from betulinic acid presented minimum inhibitory concentration (MIC) value of 91.2 μM, and the kinetic growth curve performed with parasites treated with this most active compound revealed complete inhibition of trophozoite proliferation at 2 h of incubation and total abolition of trophozoite growth in 24 h, revealing that the piperazine derivative is an efficient trichomonacidal molecule. The same compound promoted total erythrocyte lysis and lactate dehydrogenase (LDH) liberation of 83 and 100 % (at 45.6 and 91.2 μM, respectively), indicating parasite membrane damage. The piperazine derivative demonstrated cytotoxic effect against the HMVII and HeLa cell lineages at the MIC value. This is the first report of semisynthetic triterpenoid derivatives with anti-T. vaginalis activity, revealing the high potential of these compounds as trichomonacidal agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adebajo AC, Ayoola OF, Iwalewa EO, Akindahunsi AA, Omisore NO, Adewunmi CO, Adenowo TK (2006) Anti-trichomonal biochemical and toxicological activities of methanolic extract and some carbazole alkaloids from the leaves of Murraya koenigii growing in Nigeria. Phytomedicine 4:246–254

    Article  Google Scholar 

  • Arthan D, Sithiprom S, Thima K, Limmatvatirat C, Chavalitshewinkoon-Petmitr P, Svasti J (2008) Inhibitory effects of Thai plants beta-glycosides on Trichomonas vaginalis. Parasitol Res 103:443–448

    Article  PubMed  Google Scholar 

  • Bache M, Zschornak MP, Passin S, Keßler J, Wichmann H, Kappler M, Paschke R, Kalunerović GN, Kommera H, Taubert H, Vordermark D (2011) Increased betulinic acid induced cytotoxicity and radiosensitivity in glioma cells under hypoxic conditions. Radiat Oncol 6:111–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Basiglio CL, Sánchez Pozzi EJ, Mottino AD, Roma MG (2009) Differential effects of silymarin and its active component silibinin on plasma membrane stability and hepatocellular lysis. Chem Biol Interact 179:297–303

    Article  CAS  PubMed  Google Scholar 

  • Cotch MF, Pastore JG, Nugent RP, Hillier SL, Gibbs RS, Martin DH, Eschenbach DA, Edelman R, Carey JC, Regan JA, Krohn MA, Klebanoff MA, Rao AV, Rhoads GG (1997) Trichomonas vaginalis associated with low birth weight and preterm delivery. Sex Transm Dis 24:353–360

    Article  CAS  PubMed  Google Scholar 

  • Cudmore SL, Delgaty KL, Hayward-McClelland SF, Petrin DP, Garber GE (2004) Treatment of infection caused by metronidazole-resistant Trichomonas vaginalis. Clin Microbiol Rev 17:783–793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diamond LS (1957) The establishment of various Trichomonas of animals and man in axenic cultures. J Parasitol 43:488–490

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Carmona DB, Escalante-Erosa F, Garcia-Sosa K, Ruiz-Pinell G, Gutierrez-Yapu D, Chan-Bacab MJ, Giminez-Turba A, Pena-Rodrigues LM (2010) Antiprotozoal activity of betulinic acid derivatives. Phytomedicine 17:379–382

    Article  CAS  PubMed  Google Scholar 

  • Ertabaklar H, Kivçak B, Mert T, Özensoy T (2009) In vitro activity of Arbustus unedo leaf extracts against Trichomonas vaginalis trophozoites. Türk Parazitol Derg 33:263–265

    Google Scholar 

  • Gauthier C, Legault J, Lalancette-Girard K, Mshvildadze V, Pichette A (2009) Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg Med Chem 17:2002–2008

    Article  CAS  PubMed  Google Scholar 

  • Giordani RB, Vieira PDB, Weizenmann M, Rosemberg DB, Souza AP, Bonorino C, De Carli GA, Bogo MR, Zuanazzi JA, Tasca T (2011) Lycorine induces cell death in the amitochondriate parasite, Trichomonas vaginalis, via an alternative non-apoptotic death pathway. Phytochemistry 72:545–650

    Article  Google Scholar 

  • Gnoatto SCB, Dalla-Vechia L, Lencina CL, Dassonville-Klimpt A, Nascimento SD, Mossalayi D, Guillon J, Gossmann G, Sonnet P (2008a) Synthesis and preliminary evaluation of new ursolic and oleanolic acid derivatives as antileishmanial agents. J Enzyme Inhib Med Chem 23:604–610

    Article  CAS  PubMed  Google Scholar 

  • Gnoatto SCB, Susplugas S, Dalla Vechia L, Ferreira TB, Dassonville-Klimpt A, Zimmer KR, Demailly C, Nascimento SD, Guillon J, Grellier P, Verli H, Gosmann G, Sonnet P (2008b) Pharmacomodulation on the 3-acetylursolic acid skeleton: design, synthesis, and biological evaluation of novel N-{3-[4-(3-aminopropyl)piperazinyl]propyl}-3-O-acetylursolamide derivatives as antimalarial agents. Bioorg Med Chem 16:771–782

    Article  CAS  PubMed  Google Scholar 

  • He W, Van Puyvelde L, Maes L, Bosselaers J, De Kimpe N (2003) Antitrichomonas in vitro activity of Cussonia holstii Engl. Nat Prod Res 17:127–133

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim AN (2014) Comparison of in vitro activity of metronidazole and garlic-based product (Tomex®) on Trichomonas vaginalis. Parasitol Res 112:2063–2067

    Article  Google Scholar 

  • Innocente AM, Silva GNS, Cruz LN, Moraes MS, Nakabashi M, Sonnet P, Gosmann G, Garcia CRS, Gnoatto SCB (2012) Synthesis and antiplasmodial activity of betulinic acid and ursolic acid analogues. Molecules 17:12003–12014

    Article  CAS  PubMed  Google Scholar 

  • Kondo S, Mizuki E, Akao T, Onba M (2002) Antitrichomonal strains of Bacillus thuringiensis. Parasitol Res 88:1090–1092

    Article  PubMed  Google Scholar 

  • Lehker MW, Alderete JF (2000) Biology of trichomonosis. Curr Opin Infect Dis 13:37–45

    Article  PubMed  Google Scholar 

  • Mason PR, Fiori PL, Cappuccinelli P, Rappelli P, Gregson S (2005) Seroepidemiology of Trichomonas vaginalis in rural women in Zimbabwe and patterns of association with HIV infection. Epidemiol Infect 133:315–323

    Article  PubMed Central  PubMed  Google Scholar 

  • Moon T, Wilkinson JM, Cavanagh HMA (2006) Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflate. Parasitol Res 99:722–728

    Article  PubMed  Google Scholar 

  • Oramas-Royo SM, Chavez H, Martin-Rodriguez P, Fernandez-Perez L, Ravelo AR, Estevez-Braun A (2010) Cytotoxic triterpenoids from Maytenus retusa. J Nat Prod 73:2029–2034

    Article  CAS  PubMed  Google Scholar 

  • Petrin D, Delgaty K, Bhatt R, Garber G (1998) Clinical and microbiological aspects of Trichomonas vaginalis. Clin Microbiol Rev 11:300–317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pomel S, Biot C, Bories C, Loiseau PM (2013) Antiprotozoal activity of ferroquine. Parasitol Res 112:665–669

    Article  CAS  PubMed  Google Scholar 

  • Poole DN, McClelland RS (2013) Global epidemiology of Trichomonas vaginalis. Sex Transm Infect 00:1–5

    Google Scholar 

  • Rocha LG, Almeida JRGS, Macêdo RO, Barbosa-Filho JM (2005) A review of natural products with antileishmanial activity. Phytomedicine 12:514–535

    Article  CAS  PubMed  Google Scholar 

  • Rocha T, De Brum VP, Gnoatto SC, Tasca T, Gosmann G (2012) Anti-Trichomonas vaginalis of saponins from Quillaja, Passiflora, and Ilex species. Parasitol Res 110:2551–2556

    Article  PubMed  Google Scholar 

  • Rocha DAS, Rosa IA, Souza W, Benchimol M (2014) Evaluation of the effect of miltefosine on Trichomonas vaginalis. Parasitol Res 113:1041–1047

    Article  PubMed  Google Scholar 

  • Schimdt G, Narcisi E, Mosure D, Secor E, Higgins J, Moreno H (2001) Prevalence of metronidazole resistant Trichomonas vaginalis in a gynecology clinic. J Reprod Med 46:545–549

    Google Scholar 

  • Schwebke JR, Barrientes FJ (2006) Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother 50:4209–4210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sorvillo F, Smith L, Kerndt P, Ash L (2001) Trichomonas vaginalis, HIV, and African-Americans. Emerg Infect Dis 7:927–932

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sutcliffe S, Giovannucci E, Alderete JF, Chang TH, Gaydos CA, Zenilman JM, De Marzo AM, Willett WC, Platz EA (2006) Plasma antibodies against Trichomonas vaginalis and subsequent risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 15:939–945

    Article  CAS  PubMed  Google Scholar 

  • Sutcliffe S, Neace C, Magnuson NS, Reeves R, Alderete JF (2012) Trichomonosis, a common curable STI, and prostate carcinogenesis—a proposed molecular mechanism. PLoS Pathog 8:e1002801

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taketa ATC, Gnoatto SCB, Gossmann G, Pires VS, Schenkel EP, Guillaume D (2004) Triterpenois from Brazilian Ilex species and their in vitro sntitripanosomal activity. J Nat Prod 67:1697–1700

    Article  CAS  PubMed  Google Scholar 

  • Vieira PDB, Giordani RB, De Carli GA, Zuanazzi JA, Tasca T (2011) Screening and bioguided fractionation of Amaryllidaceae species with anti-Trichomonas vaginalis activity. Planta Med 77:1054–1059

    Article  CAS  Google Scholar 

  • Viikki M, Pukkala E, Nieminen P, Hakama M (2000) Gynaecological infections as risk determinants of subsequent cervical neoplasia. Acta Oncol 39:71–75

    Article  CAS  PubMed  Google Scholar 

  • WHO (2012) World Health Organization—global prevalence and incidence of selected curable sexually transmitted infections 2008. WHO, Geneva Switzerland

    Google Scholar 

Download references

Acknowledgments

This study was supported by grant from NANOBIOTEC-Brasil (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES) and by grant and financial support from INCT-IF. We thank the Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF/UFRGS). T.T. thanks CNPq for researcher fellowship and for financial support (grants 475315/2011-1 and 474930/2012-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiana Tasca.

Additional information

Adrine Maria Innocente and Patrícia de Brum Vieira contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Innocente, A.M., de Brum Vieira, P., Frasson, A.P. et al. Anti-Trichomonas vaginalis activity from triterpenoid derivatives. Parasitol Res 113, 2933–2940 (2014). https://doi.org/10.1007/s00436-014-3955-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-014-3955-0

Keywords

Navigation