Skip to main content

Advertisement

Log in

In vitro antiplasmodial activity of ethanolic extracts of mangrove plants from South East coast of India against chloroquine-sensitive Plasmodium falciparum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Malaria is one of the most prevalent infectious diseases in the world. Treatment for malaria is commonly inadequate due to the lack of quality assured effective drugs. The effectiveness of these drugs is declining at an ever accelerating rate, with consequent increase in malaria related morbidity and mortality. The newest antiplasmodial drug from plants is needed to overcome this problem. Numerous mangroves and mangal associates are used as folklore medicine to treat various human diseases. The mangrove plant species are a good source of potential bioactive entities which exhibits many therapeutic properties. The present study was carried out to test the antiplasmodial activity of five mangrove plant species distributed along the South East coast of India. Bruguiera cylindrica, Ceriops decandra, Lumnitzera racemosa, Rhizophora apiculata, and Rhizophora mucronata mangrove plant extracts exhibited in vitro antiplasmodial activity against chloroquine-sensitive Plasmodium falciparum. Of which, the ethanolic bark extract of R. mucronata exhibited high antiplasmodial activity (IC50 = 62.18 μg.ml−1). Statistical analysis reveals that, significant antiplasmodial activity (P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes was also carried out and it shows that no morphological differences in erythrocytes by the ethanolic extract of mangrove plants after 48 h of incubation. The screening for phytochemical constituents in the mangrove plants were carried out and it reveals that, the presence of alkaloids, triterpenes, flavonoids, tannins, catachin, anthroquinone, phenols, sugars, and proteins. This study shows that the mangrove plants had a source of lead compounds for the development of new drugs for the treatment of malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akalanka D, Somasundaram ST, Manavalan R (2002) Antibacterial activity of leaf and stem bark extract of Rhizophora mucronata Poir. Seshaiyana 10(2):7

    Google Scholar 

  • Azas N, Laurencin N, Delmas F, Di Giorgio C, Gasquet M, Laget M, Timon David P (2002) Synergistic in vitro antimalarial activity of plant extracts used as traditional herbal remedies in Mali. Parasitol Res 88(2):165–171

    Article  PubMed  CAS  Google Scholar 

  • Bandaranayake WM (2002) Bioactivities, bioactive compounds and chemical constituents of mangrove plants. Wetlands Ecol Manag 10:421–452

    Article  CAS  Google Scholar 

  • Basak UC, Das AB, Das P (1996) Chlorophyll, carotenoids, proteins and secondary metabolites in leaves of 14 species of mangroves. Bull Mar Sci 58:654–659

    Google Scholar 

  • Basco LK, Eldin de Pecoulas P, Wilson C, Le Bras J, Mazabraud A (1995) Point mutation in the dihydrofolate reductase gene as the molecular basis for pyrimethamine and cycloguanil resistance in Plasmodium falciparum. Mol Biochem Parasitol 69:135–138

    Article  PubMed  CAS  Google Scholar 

  • Chenniappan K, Kadarkarai M (2010) In vitro antimalarial activity of traditioanlly used Western Ghats plants from India and their interactions chloroquine against chloroquine- resistant Plasmodium falciparum. Parasitol Res. doi:10.1007/s00436-010-2005-9

    PubMed  Google Scholar 

  • Chou FY, Hostettmann Kubo K, Nakamshi K (1977) Isolation of an insect anti-feedent N-methyl flindesine and several Benz [c] phrnantherine alkaloids from East African plants a comment on chelethrine. Heterocyclic 7:969–977

    CAS  Google Scholar 

  • Chung IM, Kim MY, Moon HI (2008) Antiplasmodial activity of sesquiterpene lactone from Carpesium rosulatum in mice. Parasitol Res 103:341–344

    Article  PubMed  Google Scholar 

  • Clarkson C, Maharaj VJ, Crouch NR, Grace OM, Pillay P, Matsabisa MG, Bhagwandin N, Smith PJ, Folb PI (2004) In vitro antiplasmodial activity of medicinal plants native to or naturalized in South Africa. J Ethnopharmacol 92:177–191

    Article  PubMed  Google Scholar 

  • Cowan MM (1999) Plants products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    PubMed  CAS  Google Scholar 

  • Durand R, Ramiliarisoa O, Secardin Y, Eldin de Pecoulas P, Basco LK, Le Bras J (1997) DHFR gene point mutation as a predictor of Plasmodium falciparum resistance to cycloguanil in malaria cases from Africa imported to France. Trans R Soc Trop Med Hyg 91:460–461

    Article  PubMed  CAS  Google Scholar 

  • Gansane A, Sanon S, Ouattara LP, Traore A, Hutter S, Ollivier E, Azas N, Traore AS, Guissou IP, Sirima SB, Nebie I (2010) Antiplasmodial activity and toxicity of crude extracts from alternatives parts of plants widely used for the treatment of malaria in Burkina Faso: contribution for their preservation. Parasitol Res 106:335–340

    Article  PubMed  Google Scholar 

  • Hirazumi A, Furusawa E (1999) An immunomodulatory polysaccharide rich substance from the fruit juice of Morinda citrifolio (noni) with antitumour activity. Phytother Res 13:380–387

    Article  PubMed  CAS  Google Scholar 

  • Hoet S, Opperdoes F, Brun R, Quetin Leclercq J (2004) Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep 21:353–364

    Article  PubMed  CAS  Google Scholar 

  • Jongsuvat Y (1981) Investigation of anticancer from Acanthus illicifolius. MS Thesis. Chulalongkorn University, Bangkok, Thailand

  • Kathiresan K, Bingham BL (2001) Biology of mangroves and mangrove ecosystems. Adv Mar Biol 40:81–251

    Article  Google Scholar 

  • Keawpradub N, Kirby GC, Steele JCP, Houghton PJ (1999) Antiplasmodial activity of extracts and alkaloids of three Alstonia species from Thailand. Planta Med 65:690–694

    Article  PubMed  CAS  Google Scholar 

  • Kepam W (1986) Qualitative organic analysis (Spectrochemical techniques). Ed. II. McGraw Hill, London, pp 40–58

    Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochemical 27:969–978

    Article  CAS  Google Scholar 

  • Le Bras J, Durand R (2003) The mechanisms of resistance to antimalarial drugs in Plasmodium falciparum. Fundam Clin Pharmacol 17:147–153

    Article  PubMed  Google Scholar 

  • Lee SJ, Park WH, Moon HI (2009) Bioassay-guided isolation of antiplasmodial anacardic acids derivatives from the whole plants of Viola websteri Hemsl. Parasitol Res 104:463–466

    Article  PubMed  Google Scholar 

  • Masuda T, Yonemori S, Oyama Y, Takeda Y, Tanaka T, Andoh T, Shinohara A, Nakata M (1999) Evaluation of the antioxidant activity of environmental plants: activity of the leaf extracts from seashore plants. J Agric Food Chem 47:1749–1754

    Article  PubMed  CAS  Google Scholar 

  • Moon HI (2007) Antiplasmodial activity of ineupatorolides A from Carpesium rosulatum. Parasitol Res 100:1147–1149

    Article  PubMed  Google Scholar 

  • Moore GE, Gerner RE, Frankin HA (1967) Cultures of normal human leukocytes. J Am Med Assoc 199:519–524

    Article  CAS  Google Scholar 

  • Murakami A, Ohigashi H, Koshimizu K (1994) Possible anti-tumor promoting properties of traditional Thai foods and some of their active constituents. Asia Pac J Clin Nutr 3:185–191

    Google Scholar 

  • Muthuraja M (2009) Effect of antibacterial bioactive compounds from Exoecaria agallocha for the management of fish and poultry diseases. M.Sc. Thesis, Alagappa University, Tamil Nadu, India

  • Omulokoli E, Khan B, Chhabra SC (1997) Antiplasmodial activity of four Kenyan medicinal plants. J Ethnopharmacol 56:133–137

    Article  PubMed  CAS  Google Scholar 

  • Otoguro K, Ishiyama A, Kobayashi M, Sekiguchi H, Izuhara T, Sunazuka T, Tomoda H, Yamada H, Omura S (2004) In vitro and in vivo antimalarial activities of a carbohydrate antibiotic, prumycin against drug resistant strains of Plasmodia. J Antibiot 57(6):400–402

    PubMed  CAS  Google Scholar 

  • Ouattara Y, Sanon S, Traore Y, Mahiou V, Azas N, Sawadogo L (2006) Antimalarial activity of Swartzia madagascariensis desv. (leguminosae), combretum glutinosum guill. and perr. (combretaceae) and Tinospora bakis miers. (menispermaceae), burkina faso medicinal plants. Afr J Tradit Complement Altern Med 3(1):75–81

    Google Scholar 

  • Padmakumar K (1988) Bioactive substances from marine algae and mangroves. Ph. D. Thesis, Annamalai University, Tamil Nadu, India

  • Padmakumar K, Ayyakkannu K (1997) Antiviral activity of marine plants. Indian J Virol 13:33–36

    Google Scholar 

  • Parzy D, Doerig C, Pradines B, Rico A, Fusai T, Doury JC (1997) Proguanil resistance in Plasmodium falciparum African isolates: assessment by mutation-specific polymerase chain reaction and in vitro susceptibility testing. Am J Trop Med Hyg 57:646–650

    PubMed  CAS  Google Scholar 

  • Premanathan M, Kathiresan K, Chandra K, Bajpai SK (1993) Antiviral activity of marine plants against Newcastle disease virus. Trop Biomed 10:31–33

    Google Scholar 

  • Premanathan M, Kathiresan K, Chandra K (1994) Antiviral activity of marine and coastal plants from India. Int J Pharm 32(4):330–336

    Article  Google Scholar 

  • Premanathan M, Kathiresan K, Chandra K (1995) Antiviral evaluation of some marine plants against Semliki forest virus. Int J Pharm 33(1):75–77

    Article  Google Scholar 

  • Premanathan M, Nakashima H, Kathiresan K, Rajendran N, Yamamoto N (1996) In vitro anti-human immunodeficiency virus activity of mangrove plants. Indian J Med Res 103:278–281

    PubMed  CAS  Google Scholar 

  • Premanathan M, Arakaki R, Izumi H, Kathiresan K, Nakano M, Yamamoto N, Nakashima H (1999a) Antiviral properties of a mangrove plant, Rhizophora apiculata Blume, against immunodeficiency virus. Antivir Res 44:113–122

    Article  PubMed  CAS  Google Scholar 

  • Premanathan M, Kathiresan K, Yamamoto N, Nakashima H (1999b) In vitro anti-human immunodeficiency virus activity of polysaccharide from Rhizophora mucronata Poir. Biosci Biotechnol Biochem 63(7):1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Raja M (2009) Isolation of chemical characterization of bioactive compounds from chosen mangrove plants and their antimicrobial potential against some bacterial pathogens. Ph. D. Thesis, Alagappa University, Tamil Nadu, India

  • Ramazani A, Sardari S, Zakeri S, Vaziri B (2010) In vitro antiplasmodial and phytochemical study of five Artemisia species from Iran and in vivo activity of two species. Parasitol Res 107:593–599

    Article  PubMed  Google Scholar 

  • Rasoanaivo P, Ratsimamanga Urverg S, Ramanitrhasimbola D, Rafatro H, Rakoto Ratsimamanga A (1992) Criblage d’extraits de plantes de Madagascar pour recherche d’activite antipaludique et d’effet potentialisateur de la chloroquine. J Ethnopharmacol 64:117–126

    Article  Google Scholar 

  • Ravi Kumar S, Ramanathan G, Subhakaran M, Jacob Inbaneson S (2009) Antimicrobial compounds from marine halophytes for silkworm disease treatment. Int J Med Sci 1(5):184–191

    Google Scholar 

  • Ravikumar S, Ramanathan G, Jacob Inbaneson S, Ramu A (2010) Antiplasmodial activity of two marine polyherbal preparations from Cheatomorpha antennina and Aegiceras corniculatum against Plasmodium falciparum. Parasitol Res. doi:10.1007/s00436-010-2041-5

    Google Scholar 

  • Sanon S, Azas N, Gasquet M, Ollivier E, Mahiou V, Barro N, Cuzin Ouattara N, Traore AS, Esposito BG, Timon David P (2003) Antiplasmodial activity of alkaloid extracts from Pavetta crassipes (K. Schum) and Acanthospermum hispidum (DC), two plants used in traditional medicine in Burkina Faso. Parasitol Res 90:314–317

    Article  PubMed  CAS  Google Scholar 

  • Saxena S, Pant N, Jain DC, Bhaluni RS (2003) Antimalarial agents from plant sources. Curr Sci 85:1314–1329

    CAS  Google Scholar 

  • Scalbert A (1991) Antimicrobial properties of tannins. Phytochemical 30:3875–3883

    Article  CAS  Google Scholar 

  • Sherman PW, Billing J (1999) Darwinian gastronomy: why we use spices. Bioscience 49:453–463

    Article  Google Scholar 

  • Sivaperumal P (2009) Antibacterial sensitivity of active compounds from Exoecaria agallocha against antibiotic resistant human bacterial pathogens. M.Sc. Thesis, Alagappa University, Tamil Nadu, India

  • Sofowora A (1982) Medicinal plants and traditional medicine in Africa. John Wiley and Sons Ltd. Chichester, United Kingdom

  • Son IH, Chung IM, Lee SJ, Moon HI (2007) Antiplasmodial activity of novel stilbene derivatives isolated from Parthenocissus tricuspidata from South Korea. Parasitol Res 101:237–241

    Article  PubMed  Google Scholar 

  • Subramonia Thangam T, Kathiresan K (1988) Toxic effect of mangrove plant extracts on mosquito larvae Anopheles stephensi L. Curr Sci 57(16):914–915

    Google Scholar 

  • Subramonia Thangam T, Kathiresan K (1997) Mosquito Larvicidal activity of mangrove plant extracts and synergistic activity of Rhizophora apiculata with pyrethrum against Culex quinquefasciatus. Int J Pharm 35(1):69–71

    Article  Google Scholar 

  • Trager W (1987) The cultivation of Plasmodium falciparum: applications in basic and applied research in malaria. Ann Trop Med Parasitol 82:511–529

    Google Scholar 

  • Waako PJ, Katuura E, Smith P, Folb P (2007) East African medicinal plants as a source of lead compounds for the development of new antimalarial drugs. Afr J Ecol 45(1):102–106

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the authorities of Alagappa University for providing required facilities and also to Indian Council of Medical Research, New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundaram Ravikumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravikumar, S., Jacob Inbaneson, S., Suganthi, P. et al. In vitro antiplasmodial activity of ethanolic extracts of mangrove plants from South East coast of India against chloroquine-sensitive Plasmodium falciparum . Parasitol Res 108, 873–878 (2011). https://doi.org/10.1007/s00436-010-2128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-010-2128-z

Keywords

Navigation