Skip to main content

Advertisement

Log in

Diverse roles of C-terminal Hsp70-interacting protein (CHIP) in tumorigenesis

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

The carboxyl terminus of Hsp70-interacting protein (CHIP) is a member of E3 ubiquitin ligase, functioning as a link between the chaperone (heat shock protein 70/90) and proteasome systems, playing a vital role in maintaining the protein homeostasis in the cytoplasm. CHIP has been demonstrated to be involved in tumorigenesis, proliferation and invasion in several malignancies, regulating a number of oncogenic proteins. However, CHIP has also been implicated in the modulation of tumor suppressor proteins. The pathogenic mechanism of CHIP expression in human malignancy is not yet clear, and a number of studies have suggested that CHIP may have opposing roles in different cancers. Therefore, many studies have focused on the relationship between CHIP and carcinoma.

Methods

A literature search focusing on regulation network, biological function and clinical significance of CHIP in connection with its role in cancer development was performed on the MEDLINE databases.

Results and conclusions

CHIP may be a potential diagnostic biomarker and therapeutic target for human cancer, and may play different roles in different human cancers. This inconsistence might be induced by the diversity of CHIP downstream targeting proteins. Therefore, the phenotypes determined by CHIP should be dependent on the function of its specific targets in a specific type of cancer cells. Whether CHIP contributes to tumor progression or suppression in various human cancers remains unclear, suggesting the necessity of further extensive investigation of its role in tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2(2):101–112. doi:10.1038/nrc721

    Article  PubMed  Google Scholar 

  • Allred DC, Mohsin SK (2000) Biological features of premalignant disease in the human breast. J Mammary Gland Biol Neoplasia 5(4):351–364

    Article  CAS  PubMed  Google Scholar 

  • Anderson WF, Camargo MC, Fraumeni JF Jr, Correa P, Rosenberg PS, Rabkin CS (2010) Age-specific trends in incidence of noncardia gastric cancer in US adults. JAMA, J Am Med Assoc 303(17):1723–1728. doi:10.1001/jama.2010.496

    Article  CAS  Google Scholar 

  • Aravind L, Koonin EV (2000) The U box is a modified RING finger—a common domain in ubiquitination. Curr Biol CB 10(4):R132–R134

    Article  CAS  Google Scholar 

  • Bagatell R, Khan O, Paine-Murrieta G, Taylor CW, Akinaga S, Whitesell L (2001) Destabilization of steroid receptors by heat shock protein 90-binding drugs: a ligand-independent approach to hormonal therapy of breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 7(7):2076–2084

    CAS  Google Scholar 

  • Balachandran P, Agarwal S, Krishnani N, Pandey CM, Kumar A, Sikora SS, Saxena R, Kapoor VK (2006) Predictors of long-term survival in patients with gallbladder cancer. J Gastrointest Surg Off J Soc Surg Aliment Tract 10(6):848–854. doi:10.1016/j.gassur.2005.12.002

    Article  Google Scholar 

  • Baldwin AS (2001a) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-κB. J Clin Investig 107(3):241–246. doi:10.1172/JCI11991

    Article  CAS  PubMed  Google Scholar 

  • Baldwin AS Jr (2001b) Series introduction: the transcription factor NF-κB and human disease. J Clin Investig 107(1):3–6. doi:10.1172/JCI11891

    Article  CAS  PubMed  Google Scholar 

  • Ballinger CA, Connell P, Wu Y, Hu Z, Thompson LJ, Yin LY, Patterson C (1999) Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol Cell Biol 19(6):4535–4545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beliakoff J, Bagatell R, Paine-Murrieta G, Taylor CW, Lykkesfeldt AE, Whitesell L (2003) Hormone-refractory breast cancer remains sensitive to the antitumor activity of heat shock protein 90 inhibitors. Clin Cancer Res Off J Am Assoc Cancer Res 9(13):4961–4971

    CAS  Google Scholar 

  • Camp RL, Dolled-Filhart M, King BL, Rimm DL (2003) Quantitative analysis of breast cancer tissue microarrays shows that both high and normal levels of HER2 expression are associated with poor outcome. Cancer Res 63(7):1445–1448

    CAS  PubMed  Google Scholar 

  • Chen ZJ (2005) Ubiquitin signalling in the NF-κB pathway. Nat Cell Biol 7(8):758–765. doi:10.1038/ncb0805-758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi SY, Jo YS, Huang SM, Liang ZL, Min JK, Hong HJ, Kim JM (2011) L1 cell adhesion molecule as a novel independent poor prognostic factor in gallbladder carcinoma. Hum Pathol 42(10):1476–1483. doi:10.1016/j.humpath.2011.01.003

    Article  CAS  PubMed  Google Scholar 

  • Connell P, Ballinger CA, Jiang J, Wu Y, Thompson LJ, Hohfeld J, Patterson C (2001) The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol 3(1):93–96. doi:10.1038/35050618

    Article  CAS  PubMed  Google Scholar 

  • Dai Q, Zhang C, Wu Y, McDonough H, Whaley RA, Godfrey V, Li HH, Madamanchi N, Xu W, Neckers L, Cyr D, Patterson C (2003) CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J 22(20):5446–5458. doi:10.1093/emboj/cdg529

    Article  CAS  PubMed  Google Scholar 

  • Dickey CA, Patterson C, Dickson D, Petrucelli L (2007) Brain CHIP: removing the culprits in neurodegenerative disease. Trends Mol Med 13(1):32–38. doi:10.1016/j.molmed.2006.11.003

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL, Abbott RM, Hoog J, Dooling DJ, Koboldt DC, Schmidt H, Kalicki J, Zhang Q, Chen L, Lin L, Wendl MC, McMichael JF, Magrini VJ, Cook L, McGrath SD, Vickery TL, Appelbaum E, Deschryver K, Davies S, Guintoli T, Lin L, Crowder R, Tao Y, Snider JE, Smith SM, Dukes AF, Sanderson GE, Pohl CS, Delehaunty KD, Fronick CC, Pape KA, Reed JS, Robinson JS, Hodges JS, Schierding W, Dees ND, Shen D, Locke DP, Wiechert ME, Eldred JM, Peck JB, Oberkfell BJ, Lolofie JT, Du F, Hawkins AE, O’Laughlin MD, Bernard KE, Cunningham M, Elliott G, Mason MD, Thompson DM Jr, Ivanovich JL, Goodfellow PJ, Perou CM, Weinstock GM, Aft R, Watson M, Ley TJ, Wilson RK, Mardis ER (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464(7291):999–1005. doi:10.1038/nature08989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Esser C, Scheffner M, Hohfeld J (2005) The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J Biol Chem 280(29):27443–27448. doi:10.1074/jbc.M501574200

    Article  CAS  PubMed  Google Scholar 

  • Fan M, Park A, Nephew KP (2005) CHIP (carboxyl terminus of Hsc70-interacting protein) promotes basal and geldanamycin-induced degradation of estrogen receptor-alpha. Mol Endocrinol 19(12):2901–2914. doi:10.1210/me.2005-0111

    Article  CAS  PubMed  Google Scholar 

  • Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H, Wang HG, Atadja P, Bhalla K (2003) Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther 2(10):971–984

    CAS  PubMed  Google Scholar 

  • Gan L, Liu DB, Lu HF, Long GX, Mei Q, Hu GY, Qiu H, Hu GQ (2012) Decreased expression of the carboxyl terminus of heat shock cognate 70 interacting protein in human gastric cancer and its clinical significance. Oncol Rep 28(4):1392–1398. doi:10.3892/or 2012.1957

    CAS  PubMed  Google Scholar 

  • Gaughan L, Logan IR, Neal DE, Robson CN (2005) Regulation of androgen receptor and histone deacetylase 1 by Mdm2-mediated ubiquitylation. Nucleic Acids Res 33(1):13–26. doi:10.1093/nar/gki141

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goasguen N, de Chaisemartin C, Brouquet A, Julie C, Prevost GP, Laurent-Puig P, Penna C (2010) Evidence of heterogeneity within colorectal liver metastases for allelic losses, mRNA level expression and in vitro response to chemotherapeutic agents. Int J Cancer 127(5):1028–1037. doi:10.1002/ijc.25114

    Article  CAS  PubMed  Google Scholar 

  • Gourgiotis S, Kocher HM, Solaini L, Yarollahi A, Tsiambas E, Salemis NS (2008) Gallbladder cancer. Am J Surg 196(2):252–264. doi:10.1016/j.amjsurg.2007.11.011

    Article  PubMed  Google Scholar 

  • Group G, Paoletti X, Oba K, Burzykowski T, Michiels S, Ohashi Y, Pignon JP, Rougier P, Sakamoto J, Sargent D, Sasako M, Van Cutsem E, Buyse M (2010) Benefit of adjuvant chemotherapy for resectable gastric cancer: a meta-analysis. JAMA, J Am Med Assoc 303(17):1729–1737. doi:10.1001/jama.2010.534

    Article  Google Scholar 

  • Habelhah H, Frew IJ, Laine A, Janes PW, Relaix F, Sassoon D, Bowtell DD, Ronai Z (2002) Stress-induced decrease in TRAF2 stability is mediated by Siah2. EMBO J 21(21):5756–5765

    Article  CAS  PubMed  Google Scholar 

  • Harvey JM, Clark GM, Osborne CK, Allred DC (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol Off J Am Soc Clin Oncol 17(5):1474–1481

    CAS  Google Scholar 

  • Hayden MS, Ghosh S (2008) Shared principles in NF-κB signaling. Cell 132(3):344–362. doi:10.1016/j.cell.2008.01.020

    Article  CAS  PubMed  Google Scholar 

  • Hayes DF, Thor AD (2002) c-erbB-2 in breast cancer: development of a clinically useful marker. Semin Oncol 29(3):231–245

    Article  CAS  PubMed  Google Scholar 

  • Huber MA, Azoitei N, Baumann B, Grunert S, Sommer A, Pehamberger H, Kraut N, Beug H, Wirth T (2004) NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Investig 114(4):569–581. doi:10.1172/JCI21358

    CAS  PubMed  Google Scholar 

  • Jan CI, Yu CC, Hung MC, Harn HJ, Nieh S, Lee HS, Lou MA, Wu YC, Chen CY, Huang CY, Chen FN, Lo JF (2011) Tid1, CHIP and ErbB2 interactions and their prognostic implications for breast cancer patients. J Pathol 225(3):424–437. doi:10.1002/path.2921

    Article  CAS  PubMed  Google Scholar 

  • Jang KW, Lee JE, Kim SY, Kang MW, Na MH, Lee CS, Song KS, Lim SP (2011a) The C-terminus of Hsp70-interacting protein promotes Met receptor degradation. J Thoracic Oncol Off Publ Int Assoc Study Lung Cancer 6(4):679–687. doi:10.1097/JTO.0b013e31820d9c7e

    Google Scholar 

  • Jang KW, Lee KH, Kim SH, Jin T, Choi EY, Jeon HJ, Kim E, Han YS, Chung JH (2011b) Ubiquitin ligase CHIP induces TRAF2 proteasomal degradation and NF-κB inactivation to regulate breast cancer cell invasion. J Cell Biochem 112(12):3612–3620. doi:10.1002/jcb.23292

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ (2007) Cancer statistics, 2007. CA Cancer J Clin 57(1):43–66

    Article  PubMed  Google Scholar 

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90. doi:10.3322/caac.20107

    Article  PubMed  Google Scholar 

  • Jeong JH, An JY, Kwon YT, Li LY, Lee YJ (2008) Quercetin-induced ubiquitination and down-regulation of Her-2/neu. J Cell Biochem 105(2):585–595. doi:10.1002/jcb.21859

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnstone RW, Licht JD (2003) Histone deacetylase inhibitors in cancer therapy: is transcription the primary target? Cancer Cell 4(1):13–18

    Article  CAS  PubMed  Google Scholar 

  • Kajiro M, Hirota R, Nakajima Y, Kawanowa K, So-ma K, Ito I, Yamaguchi Y, Ohie SH, Kobayashi Y, Seino Y, Kawano M, Kawabe Y, Takei H, Hayashi S, Kurosumi M, Murayama A, Kimura K, Yanagisawa J (2009) The ubiquitin ligase CHIP acts as an upstream regulator of oncogenic pathways. Nat Cell Biol 11(3):312–319. doi:10.1038/ncb1839

    Article  CAS  PubMed  Google Scholar 

  • Kalikaki A, Koutsopoulos A, Trypaki M, Souglakos J, Stathopoulos E, Georgoulias V, Mavroudis D, Voutsina A (2008) Comparison of EGFR and K-RAS gene status between primary tumours and corresponding metastases in NSCLC. Br J Cancer 99(6):923–929. doi:10.1038/sj.bjc.6604629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441(7092):431–436. doi:10.1038/nature04870

    Article  CAS  PubMed  Google Scholar 

  • Karin M, Cao Y, Greten FR, Li ZW (2002) NF-κB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2(4):301–310. doi:10.1038/nrc780

    Article  CAS  PubMed  Google Scholar 

  • Kim RH, Mak TW (2006) Tumours and tremors: how PTEN regulation underlies both. Br J Cancer 94(5):620–624. doi:10.1038/sj.bjc.6602994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klapper LN, Waterman H, Sela M, Yarden Y (2000) Tumor-inhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res 60(13):3384–3388

    CAS  PubMed  Google Scholar 

  • Ko HS, Bailey R, Smith WW, Liu Z, Shin JH, Lee YI, Zhang YJ, Jiang H, Ross CA, Moore DJ, Patterson C, Petrucelli L, Dawson TM, Dawson VL (2009) CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity. Proc Natl Acad Sci USA 106(8):2897–2902. doi:10.1073/pnas.0810123106

    Article  CAS  PubMed  Google Scholar 

  • Lara PN Jr, Meyers FJ (1999) Treatment options in androgen-independent prostate cancer. Cancer Invest 17(2):137–144

    PubMed  Google Scholar 

  • Lee JH, Khadka P, Baek SH, Chung IK (2010) CHIP promotes human telomerase reverse transcriptase degradation and negatively regulates telomerase activity. J Biol Chem 285(53):42033–42045. doi:10.1074/jbc.M110.149831

    Article  CAS  PubMed  Google Scholar 

  • Li H, Lin X (2008) Positive and negative signaling components involved in TNFalpha-induced NF-κB activation. Cytokine 41(1):1–8. doi:10.1016/j.cyto.2007.09.016

    Article  PubMed  CAS  Google Scholar 

  • Li X, Huang M, Zheng H, Wang Y, Ren F, Shang Y, Zhai Y, Irwin DM, Shi Y, Chen D, Chang Z (2008) CHIP promotes Runx2 degradation and negatively regulates osteoblast differentiation. J Cell Biol 181(6):959–972. doi:10.1083/jcb.200711044

    Article  CAS  PubMed  Google Scholar 

  • Li F, Xie P, Fan Y, Zhang H, Zheng L, Gu D, Patterson C, Li H (2009) C terminus of Hsc70-interacting protein promotes smooth muscle cell proliferation and survival through ubiquitin-mediated degradation of FoxO1. J Biol Chem 284(30):20090–20098. doi:10.1074/jbc.M109.017046

    Article  CAS  PubMed  Google Scholar 

  • Liang ZL, Kim M, Huang SM, Lee HJ, Kim JM (2013) Expression of carboxyl terminus of Hsp70-interacting protein (CHIP) indicates poor prognosis in human gallbladder carcinoma. Oncol Lett 5(3):813–818. doi:10.3892/ol2013.1138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luo W, Zhong J, Chang R, Hu H, Pandey A, Semenza GL (2010) Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1alpha but Not HIF-2alpha. J Biol Chem 285(6):3651–3663. doi:10.1074/jbc.M109.068577

    Article  CAS  PubMed  Google Scholar 

  • Luo KJ, Hu Y, Wen J, Fu JH (2011) CyclinD1, p53, E-cadherin, and VEGF discordant expression in paired regional metastatic lymph nodes of esophageal squamous cell carcinoma: a tissue array analysis. J Surg Oncol 104(3):236–243. doi:10.1002/jso.21921

    Article  CAS  PubMed  Google Scholar 

  • Marks PA, Richon VM, Miller T, Kelly WK (2004) Histone deacetylase inhibitors. Adv Cancer Res 91:137–168. doi:10.1016/S0065-230X(04)91004-4

    CAS  PubMed  Google Scholar 

  • Marmor MD, Yarden Y (2004) Role of protein ubiquitylation in regulating endocytosis of receptor tyrosine kinases. Oncogene 23(11):2057–2070. doi:10.1038/sj.onc.1207390

    Article  CAS  PubMed  Google Scholar 

  • McClellan AJ, Frydman J (2001) Molecular chaperones and the art of recognizing a lost cause. Nat Cell Biol 3(2):E51–E53. doi:10.1038/35055162

    Article  CAS  PubMed  Google Scholar 

  • Meacham GC, Patterson C, Zhang W, Younger JM, Cyr DM (2001) The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat Cell Biol 3(1):100–105. doi:10.1038/35050509

    Article  CAS  PubMed  Google Scholar 

  • Miller P, DiOrio C, Moyer M, Schnur RC, Bruskin A, Cullen W, Moyer JD (1994) Depletion of the erbB-2 gene product p185 by benzoquinoid ansamycins. Cancer Res 54(10):2724–2730

    CAS  PubMed  Google Scholar 

  • Mimnaugh EG, Chavany C, Neckers L (1996) Polyubiquitination and proteasomal degradation of the p185c-erbB-2 receptor protein-tyrosine kinase induced by geldanamycin. J Biol Chem 271(37):22796–22801

    Article  CAS  PubMed  Google Scholar 

  • Minami Y, Yamamoto R, Nishikouri M, Fukao A, Hisamichi S (2000) Mortality and cancer incidence in patients with Parkinson’s disease. J Neurol 247(6):429–434

    Article  CAS  PubMed  Google Scholar 

  • Morishima Y, Wang AM, Yu Z, Pratt WB, Osawa Y, Lieberman AP (2008) CHIP deletion reveals functional redundancy of E3 ligases in promoting degradation of both signaling proteins and expanded glutamine proteins. Hum Mol Genet 17(24):3942–3952. doi:10.1093/hmg/ddn296

    Article  CAS  PubMed  Google Scholar 

  • Muller P, Hrstka R, Coomber D, Lane DP, Vojtesek B (2008) Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene 27(24):3371–3383. doi:10.1038/sj.onc.1211010

    Article  CAS  PubMed  Google Scholar 

  • Naito AT, Okada S, Minamino T, Iwanaga K, Liu ML, Sumida T, Nomura S, Sahara N, Mizoroki T, Takashima A, Akazawa H, Nagai T, Shiojima I, Komuro I (2010) Promotion of CHIP-mediated p53 degradation protects the heart from ischemic injury. Circ Res 106(11):1692–1702. doi:10.1161/CIRCRESAHA.109.214346

    Article  CAS  PubMed  Google Scholar 

  • Narayan V, Pion E, Landre V, Muller P, Ball KL (2011) Docking-dependent ubiquitination of the interferon regulatory factor-1 tumor suppressor protein by the ubiquitin ligase CHIP. J Biol Chem 286(1):607–619. doi:10.1074/jbc.M110.153122

    Article  CAS  PubMed  Google Scholar 

  • Nihira K, Ando Y, Yamaguchi T, Kagami Y, Miki Y, Yoshida K (2010) Pim-1 controls NF-κB signalling by stabilizing RelA/p65. Cell Death Differ 17(4):689–698. doi:10.1038/cdd.2009.174

    Article  CAS  PubMed  Google Scholar 

  • Oh KH, Yang SW, Park JM, Seol JH, Iemura S, Natsume T, Murata S, Tanaka K, Jeon YJ, Chung CH (2011) Control of AIF-mediated cell death by antagonistic functions of CHIP ubiquitin E3 ligase and USP2 deubiquitinating enzyme. Cell Death Differ 18(8):1326–1336. doi:10.1038/cdd.2011.3

    Article  CAS  PubMed  Google Scholar 

  • Ohta T, Fukuda M (2004) Ubiquitin and breast cancer. Oncogene 23(11):2079–2088. doi:10.1038/sj.onc.1207371

    Article  CAS  PubMed  Google Scholar 

  • Olsen JH, Friis S, Frederiksen K, McLaughlin JK, Mellemkjaer L, Moller H (2005) Atypical cancer pattern in patients with Parkinson’s disease. Br J Cancer 92(1):201–205. doi:10.1038/sj.bjc.6602279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paik S, Kim C, Wolmark N (2008) HER2 status and benefit from adjuvant trastuzumab in breast cancer. N Engl J Med 358(13):1409–1411. doi:10.1056/NEJMc0801440

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Yoon DS, Kim KS, Choi JS, Lee WJ, Chi HS, Kim BR (2006) [Analysis of prognostic factors after curative resection for gallbladder carcinoma. Korean J Gastroenterol Taehan Sohwagi Hakhoe chi 48(1):32–36

    Google Scholar 

  • Park BK, Zhang H, Zeng Q, Dai J, Keller ET, Giordano T, Gu K, Shah V, Pei L, Zarbo RJ, McCauley L, Shi S, Chen S, Wang CY (2007) NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nat Med 13(1):62–69. doi:10.1038/nm1519

    Article  CAS  PubMed  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108

    Article  PubMed  Google Scholar 

  • Patani N, Jiang W, Newbold R, Mokbel K (2010) Prognostic implications of carboxyl-terminus of Hsc70 interacting protein and lysyl-oxidase expression in human breast cancer. J Carcinog 9:9. doi:10.4103/1477-3163.72505

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pickart CM (2001) Ubiquitin enters the new millennium. Mol Cell 8(3):499–504

    Article  CAS  PubMed  Google Scholar 

  • Pratt WB, Toft DO (1997) Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev 18(3):306–360

    CAS  PubMed  Google Scholar 

  • Prins GS, Sklarew RJ, Pertschuk LP (1998) Image analysis of androgen receptor immunostaining in prostate cancer accurately predicts response to hormonal therapy. J Urol 159(3):641–649

    Article  CAS  PubMed  Google Scholar 

  • Raja SM, Clubb RJ, Bhattacharyya M, Dimri M, Cheng H, Pan W, Ortega-Cava C, Lakku-Reddi A, Naramura M, Band V, Band H (2008) A combination of Trastuzumab and 17-AAG induces enhanced ubiquitinylation and lysosomal pathway-dependent ErbB2 degradation and cytotoxicity in ErbB2-overexpressing breast cancer cells. Cancer Biol Ther 7(10):1630–1640

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97(18):10014–10019. doi:10.1073/pnas.180316197

    Article  CAS  PubMed  Google Scholar 

  • Ryo A, Suizu F, Yoshida Y, Perrem K, Liou YC, Wulf G, Rottapel R, Yamaoka S, Lu KP (2003) Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol Cell 12(6):1413–1426

    Article  CAS  PubMed  Google Scholar 

  • Saccani S, Marazzi I, Beg AA, Natoli G (2004) Degradation of promoter-bound p65/RelA is essential for the prompt termination of the nuclear factor κB response. J Exp Med 200(1):107–113. doi:10.1084/jem.20040196

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarkar S, Brautigan DL, Parsons SJ, Larner JM (2012) Androgen receptor degradation by the E3 ligase CHIP modulates mitotic arrest in prostate cancer cells. Oncogene. doi:10.1038/onc.2012.561

    PubMed  Google Scholar 

  • Schulz R, Marchenko ND, Holembowski L, Fingerle-Rowson G, Pesic M, Zender L, Dobbelstein M, Moll UM (2012) Inhibiting the HSP90 chaperone destabilizes macrophage migration inhibitory factor and thereby inhibits breast tumor progression. J Exp Med 209(2):275–289. doi:10.1084/jem.20111117

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shah SP, Morin RD, Khattra J, Prentice L, Pugh T, Burleigh A, Delaney A, Gelmon K, Guliany R, Senz J, Steidl C, Holt RA, Jones S, Sun M, Leung G, Moore R, Severson T, Taylor GA, Teschendorff AE, Tse K, Turashvili G, Varhol R, Warren RL, Watson P, Zhao Y, Caldas C, Huntsman D, Hirst M, Marra MA, Aparicio S (2009) Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461(7265):809–813. doi:10.1038/nature08489

    Article  CAS  PubMed  Google Scholar 

  • Shang Y, Zhao X, Xu X, Xin H, Li X, Zhai Y, He D, Jia B, Chen W, Chang Z (2009) CHIP functions an E3 ubiquitin ligase of Runx1. Biochem Biophys Res Commun 386(1):242–246. doi:10.1016/j.bbrc.2009.06.043

    Article  CAS  PubMed  Google Scholar 

  • Tabernero J, Macarulla T, Ramos FJ, Baselga J (2005) Novel targeted therapies in the treatment of gastric and esophageal cancer. Ann Oncol Off J Eur Soc Med Oncol/ESMO 16(11):1740–1748. doi:10.1093/annonc/mdi355

    Article  CAS  Google Scholar 

  • Tak PP, Firestein GS (2001) NF-κB: a key role in inflammatory diseases. J Clin Investig 107(1):7–11. doi:10.1172/JCI11830

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Grusby MJ, Kaisho T (2007) PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol 8(6):584–591. doi:10.1038/ni1464

    Article  CAS  PubMed  Google Scholar 

  • Thoms HC, Loveridge CJ, Simpson J, Clipson A, Reinhardt K, Dunlop MG, Stark LA (2010) Nucleolar targeting of RelA(p65) is regulated by COMMD1-dependent ubiquitination. Cancer Res 70(1):139–149. doi:10.1158/0008-5472.CAN-09-1397

    Article  CAS  PubMed  Google Scholar 

  • Tsukahara F, Maru Y (2010) Bag1 directly routes immature BCR-ABL for proteasomal degradation. Blood 116(18):3582–3592. doi:10.1182/blood-2009-10-249623

    Article  CAS  PubMed  Google Scholar 

  • Vermaat JS, Nijman IJ, Koudijs MJ, Gerritse FL, Scherer SJ, Mokry M, Roessingh WM, Lansu N, de Bruijn E, van Hillegersberg R, van Diest PJ, Cuppen E, Voest EE (2012) Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clin Cancer Res Off J Am Assoc Cancer Res 18(3):688–699. doi:10.1158/1078-0432.CCR-11-1965

    Article  CAS  Google Scholar 

  • Wang AM, Morishima Y, Clapp KM, Peng HM, Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP (2010) Inhibition of hsp70 by methylene blue affects signaling protein function and ubiquitination and modulates polyglutamine protein degradation. J Biol Chem 285(21):15714–15723. doi:10.1074/jbc.M109.098806

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wu X, Zhang J, Chen Y, Xu J, Xia X, He S, Qiang F, Li A, Shu Y, Roe OD, Li G, Zhou JW (2013) CHIP functions as a novel suppressor of tumour angiogenesis with prognostic significance in human gastric cancer. Gut 62(4):496–508. doi:10.1136/gutjnl-2011-301522

    Article  CAS  PubMed  Google Scholar 

  • Waterman H, Yarden Y (2001) Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett 490(3):142–152

    Article  CAS  PubMed  Google Scholar 

  • Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359(5):492–507. doi:10.1056/NEJMra0708126

    Article  CAS  PubMed  Google Scholar 

  • Wen J, Luo KJ, Hu Y, Yang H, Fu JH (2013) Metastatic lymph node CHIP expression is a potential prognostic marker for resected esophageal squamous cell carcinoma patients. Ann Surg Oncol 20(5):1668–1675. doi:10.1245/s10434-012-2733-4

    Article  PubMed  Google Scholar 

  • Wu CJ, Conze DB, Li X, Ying SX, Hanover JA, Ashwell JD (2005) TNF-alpha induced c-IAP1/TRAF2 complex translocation to a Ubc6-containing compartment and TRAF2 ubiquitination. EMBO J 24(10):1886–1898. doi:10.1038/sj.emboj.7600649

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Mimnaugh E, Rosser MF, Nicchitta C, Marcu M, Yarden Y, Neckers L (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 276(5):3702–3708. doi:10.1074/jbc.M006864200

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L (2002) Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci USA 99(20):12847–12852. doi:10.1073/pnas.202365899

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Zhou Q, Zhou J, Huang Y, Yan Y, Li W, Wang C, Hu G, Lu Y, Chen J (2011) Carboxyl terminus of Hsp70-interacting protein (CHIP) contributes to human glioma oncogenesis. Cancer Sci 102(5):959–966. doi:10.1111/j.1349-7006.2011.01888.x

    Article  CAS  PubMed  Google Scholar 

  • Yi X, Wei W, Wang SY, Du ZY, Xu YJ, Yu XD (2008) Histone deacetylase inhibitor SAHA induces ERalpha degradation in breast cancer MCF-7 cells by CHIP-mediated ubiquitin pathway and inhibits survival signaling. Biochem Pharmacol 75(9):1697–1705. doi:10.1016/j.bcp.2007.10.035

    Article  CAS  PubMed  Google Scholar 

  • Zheng FF, Kuduk SD, Chiosis G, Munster PN, Sepp-Lorenzino L, Danishefsky SJ, Rosen N (2000) Identification of a geldanamycin dimer that induces the selective degradation of HER-family tyrosine kinases. Cancer Res 60(8):2090–2094

    CAS  PubMed  Google Scholar 

  • Zhou P, Fernandes N, Dodge IL, Reddi AL, Rao N, Safran H, DiPetrillo TA, Wazer DE, Band V, Band H (2003) ErbB2 degradation mediated by the co-chaperone protein CHIP. J Biol Chem 278(16):13829–13837. doi:10.1074/jbc.M209640200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by grants from the National Natural Science Foundation of China (No. 81201636), the Science and Technology Department of Jiangsu Province (No. BK2012139), and China Postdoctoral Science Foundation (No. 2012M511323).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Bai or Jun-Nian Zheng.

Additional information

Chao Sun and Hai-Long Li have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Li, HL., Shi, ML. et al. Diverse roles of C-terminal Hsp70-interacting protein (CHIP) in tumorigenesis. J Cancer Res Clin Oncol 140, 189–197 (2014). https://doi.org/10.1007/s00432-013-1571-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-013-1571-5

Keywords

Navigation