Skip to main content
Log in

Time pressure affects the efficiency of perceptual processing in decisions under conflict

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

The negative correlation between speed and accuracy in perceptual decision making is often explained as a tradeoff, where lowered decision boundaries under time pressure result in faster but more error-prone responses. Corresponding implementations in sequential sampling models confirmed the success of this account, which has led to the prevalent assumption that a second component of decision making, the efficiency of perceptual processing, is largely independent from temporal demands. To test the generality of this claim, we examined time pressure effects on decisions under conflict. Data from a flanker task were fit with a sequential sampling model that incorporates two successive phases of response selection, driven by the output of an early and late stage of stimulus selection, respectively. The fits revealed the canonical decrease of response boundaries with increasing time pressure. In addition, time pressure reduced the duration of non-decisional processes and impaired the early stage of stimulus selection, together with the subsequent first phase of response selection. The results show that the relation between speed and accuracy not only relies on the strategic adjustment of response boundaries but involves variations of processing efficiency. The findings support recent evidence of drift rate modulations in response to time pressure in simple perceptual decisions and confirm their validity in the context of more complex tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdi, H., & Williams, L. J. (2010). Jackknife. In N. Salkind (Ed.), Encyclopedia of Research Design (pp. 655–661). Thousand Oaks: Sage.

    Google Scholar 

  • Bausenhart, K. M., Rolke, B., Seibold, V. C., & Ulrich, R. (2010). Temporal preparation influences the dynamics of information processing: evidence for early onset of information accumulation. Vision Research, 50(11), 1025–1034. doi:10.1016/j.visres.2010.03.011.

    Article  PubMed  Google Scholar 

  • Bogacz, R., Wagenmakers, E.-J., Forstmann, B. U., & Nieuwenhuis, S. (2010). The neural basis of the speed-accuracy tradeoff. Trends in Neurosciences, 33(1), 10–16. doi:10.1016/j.tins.2009.09.002.

    Article  PubMed  Google Scholar 

  • Brent, R. P. (1973). Algorithms for function minimization without derivatives. Englewood-Cliffs: Prentice-Hall.

    Google Scholar 

  • Brown, S., & Heathcote, A. (2005). A ballistic model of choice response time. Psychological Review, 112(1), 117–128. doi:10.1037/0033-295X.112.1.117.

    Article  PubMed  Google Scholar 

  • Brown, S., & Heathcote, A. (2008). The simplest complete model of choice response time: linear ballistic accumulation. Cognitive Psychology, 57(3), 153–178. doi:10.1016/j.cogpsych.2007.12.002.

    Article  PubMed  Google Scholar 

  • Busemeyer, J. R., & Townsend, J. T. (1993). Decision field theory: a dynamic-cognitive approach to decision making in an uncertain environment. Psychological Review, 100(3), 432–459.

    Article  PubMed  Google Scholar 

  • Carrasco, M., & McElree, B. (2001). Covert attention accelerates the rate of visual information processing. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 5363–5367. doi:10.1073/pnas.081074098.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dambacher, M., & Hübner, R. (2013). Investigating the speed-accuracy trade-off: better use deadlines or response signals? Behavior Research Methods, 45(3), 702–717. doi:10.3758/s13428-012-0303-0.

    Article  PubMed  Google Scholar 

  • Dambacher, M., Hübner, R., & Schlösser, J. (2011). Monetary incentives in speeded perceptual decision: effects of penalizing errors versus slow responses. Frontiers in Psychology, 2, 248. doi:10.3389/fpsyg.2011.00248.

    Article  PubMed Central  PubMed  Google Scholar 

  • Diederich, A., & Busemeyer, J. R. (2006). Modeling the effects of payoff on response bias in a perceptual discrimination task: bound-change, drift-rate-change, or two-stage-processing hypothesis. Perception and Psychophysics, 68(2), 194–207.

    Article  PubMed  Google Scholar 

  • Dosher, B. A. (1976). The retrieval of sentences from memory: a speed-accuracy study. Cognitive Psychology, 8(3), 291–310. doi:10.1016/0010-0285(76)90009-8.

    Article  Google Scholar 

  • Efron, B. (1979). Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7(1), 1–26.

    Article  Google Scholar 

  • Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Montpelier: Capital City Press.

    Book  Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception and Psychophysics, 16(1), 143–149. doi:10.3758/BF03203267.

    Article  Google Scholar 

  • Evans, J. S. B. T., & Stanovich, K. E. (2013). Dual-process theories of higher cognition: advancing the debate. Perspectives on Psychological Science, 8(3), 223–241. doi:10.1177/1745691612460685.

    Article  Google Scholar 

  • Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 121(3), 262–269.

    Article  Google Scholar 

  • Forstmann, B. U., Anwander, A., Schäfer, A., Neumann, J., Brown, S., Wagenmakers, E.-J., et al. (2010). Cortico-striatal connections predict control over speed and accuracy in perceptual decision making. Proceedings of the National Academy of Sciences of the United States of America, 107(36), 15916–15920. doi:10.1073/pnas.1004932107.

    Article  PubMed Central  PubMed  Google Scholar 

  • Forstmann, B. U., Dutilh, G., Brown, S., Neumann, J., von Cramon, D. Y., Ridderinkhof, K. R., et al. (2008). Striatum and pre-SMA facilitate decision-making under time pressure. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17538–17542. doi:10.1073/pnas.0805903105.

    Article  PubMed Central  PubMed  Google Scholar 

  • Forstmann, B. U., Tittgemeyer, M., Wagenmakers, E.-J., Derrfuss, J., Imperati, D., & Brown, S. (2011). The speed-accuracy tradeoff in the elderly brain: a structural model-based approach. The Journal of Neuroscience, 31(47), 17242–17249. doi:10.1523/jneurosci.0309-11.2011.

    Article  PubMed  Google Scholar 

  • Garrett, H.E. (1922). A study of the relation of accuracy to speed. Archives of Psychology, 56, 1–104.

    Google Scholar 

  • Gegenfurtner, K. R. (1992). PRAXIS: Brent’s algorithm for function minimization. Behavior Research Methods, Instruments, and Computers, 24(4), 560–564. doi:10.3758/BF03203605.

    Article  Google Scholar 

  • Gratton, G., Coles, M. G. H., & Donchin, E. (1992). Optimizing the use of information: strategic control of activation of responses. Journal of Experimental Psychology: General, 121(4), 480–506.

    Article  Google Scholar 

  • Gray, H. L., & Schucany, W. R. (1972). The generalized jackknife statistic. New York: Marcel Dekker.

    Google Scholar 

  • Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394(20), 780–784.

    Article  PubMed  Google Scholar 

  • Heathcote, A., & Love, J. (2012). Linear deterministic accumulator models of simple choice. Frontiers in Psychology, 3, 292. doi:10.3389/fpsyg.2012.00292.

    Article  PubMed Central  PubMed  Google Scholar 

  • Heitz, R. P., & Schall, J. D. (2012). Neural mechanisms of speed-accuracy tradeoff. Neuron, 76(3), 616–628. doi:10.1016/j.neuron.2012.08.030.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ho, T., Brown, S., van Maanen, L., Forstmann, B. U., Wagenmakers, E.-J., & Serences, J. T. (2012). The optimality of sensory processing during the speed-accuracy tradeoff. The Journal of Neuroscience, 32(23), 7992–8003. doi:10.1523/jneurosci0340-12.2012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hübner, R., & Schlösser, J. (2010). Monetary reward increases attentional effort in the flanker task. Psychonomic Bulletin and Review, 17(6), 821–826. doi:10.3758/pbr.17.6.821.

    Article  PubMed  Google Scholar 

  • Hübner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological Review, 117(3), 759–784. doi:10.1037/a0019471.

    Article  PubMed  Google Scholar 

  • Hübner, R., & Töbel, L. (2012). Does attentional selectivity in the flanker task improve discretely or gradually? Frontiers in Psychology, 3, 434. doi:10.3389/fpsyg.2012.00434.

  • Ivanoff, J., Branning, P., & Marois, R. (2008). fMRI evidence for a dual process account of the speed-accuracy tradeoff in decision-making. PLoS One, 3(7), e2635. doi:10.1371/journal.pone.0002635.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jackson, P. R. (1986). Robust methods in statistics. In A. D. Lovie (Ed.), New developments in statistics for psychology and the social sciences (pp. 22–43). London: The British Psychological Society and Methuen.

    Google Scholar 

  • Kleinsorge, T. (2001). The time course of effort mobilization and strategic adjustments of response criteria. Psychological Research, 65(3), 216–223.

    Article  PubMed  Google Scholar 

  • Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108(2), 393–434.

    Article  PubMed  Google Scholar 

  • McElree, B., & Carrasco, M. (1999). The temporal dynamics of visual search: evidence for parallel processing in feature and conjunction searches. Journal of Experimental Psychology: Human Perception and Performance, 25(6), 1517–1539.

    PubMed Central  PubMed  Google Scholar 

  • Miller, J., Patterson, T., & Ulrich, R. (1998). Jackknife-based method for measuring LRP onset latency differences. Psychophysiology, 35(1), 99–115.

    Article  PubMed  Google Scholar 

  • Miller, J., Sproesser, G., & Ulrich, R. (2008). Constant versus variable response signal delays in speed–accuracy trade-offs: effects of advance preparation for processing time. Perception and Psychophysics, 70(5), 878–886.

    Article  PubMed  Google Scholar 

  • Mosteller, F., & Tukey, J. (1977). Data analysis and regression. Reading: Addison-Wesley.

    Google Scholar 

  • Osman, A., Lou, L., Müller-Gethmann, H., Rinkenauer, G., Mattes, S., & Ulrich, R. (2000). Mechanisms of speed–accuracy tradeoff: evidence from covert motor processes. Biological Psychology, 51(2–3), 173–199.

    Article  PubMed  Google Scholar 

  • Palmer, J., Huk, A. C., & Shadlen, M. N. (2005). The effect of stimulus strength on the speed and accuracy of a perceptual decision. Journal of Vision, 5(5), 376–404. doi:http://www.ncbi.nlm.nih.gov/pubmed/16097871.

    Article  PubMed  Google Scholar 

  • Philiastides, M. G., Ratcliff, R., & Sajda, P. (2006). Neural representation of task difficulty and decision making during perceptual categorization: a timing diagram. The Journal of Neuroscience, 26(35), 8965–8975. doi:10.1523/jneurosci.1655-06.2006.

    Article  PubMed  Google Scholar 

  • Rae, B., Heathcote, A., Donkin, C., Averell, L., & Brown, S. (2014). The hare and the tortoise: emphasizing speed can change the evidence used to make decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition (in press).

  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108.

    Article  Google Scholar 

  • Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86(3), 446–461.

    Article  PubMed  Google Scholar 

  • Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural Computation, 20(4), 873–922. doi:10.1162/neco.2008.12-06-420.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two-choice decisions. Psychological Science, 9(5), 347–356. doi:10.1111/1467-9280.00067.

    Article  Google Scholar 

  • Ratcliff, R., & Smith, P. L. (2004). A comparison of sequential sampling models for two-choice reaction time. Psychological Review, 111(2), 333–367. doi:10.1037/0033-295X.111.2.333.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ratcliff, R., Thapar, A., & McKoon, G. (2003). A diffusion model analysis of the effects of aging on brightness discrimination. Perception and Psychophysics, 65(4), 523–535.

    Article  PubMed Central  PubMed  Google Scholar 

  • Reed, A. V. (1973). Speed-accuracy trade-off in recognition memory. Science, 181(4099), 574–576. doi:10.1126/science.181.4099.574.

    Article  PubMed  Google Scholar 

  • Rinkenauer, G., Osman, A., Ulrich, R., Müller-Gethmann, H., & Mattes, S. (2004). On the locus of speed-accuracy trade-off in reaction time: inferences from the lateralized readiness potential. Journal of Experimental Psychology: General, 133(2), 261–282. doi:10.1037/0096-3445.133.2.261.

    Article  Google Scholar 

  • Seibold, V. C., Bausenhart, K. M., Rolke, B., & Ulrich, R. (2011). Does temporal preparation increase the rate of sensory information accumulation? Acta Psychologica, 137(1), 56–64. doi:10.1016/j.actpsy.2011.02.006.

    Article  PubMed  Google Scholar 

  • Simon, J. R. (1990). The effects of an irrelevant directional cue on human information processing. In R. W. Proctor & T. G. Reeve (Eds.), Stimulus-response compatibility: an integrated perspective (pp. 31–86). Amsterdam: North-Holland.

    Google Scholar 

  • Starns, J. J., Ratcliff, R., & McKoon, G. (2012). Evaluating the unequal-variance and dual-process explanations of zROC slopes with response time data and the diffusion model. Cognitive Psychology, 64(1–2), 1–34. doi:10.1016/j.cogpsych.2011.10.002.

    Article  PubMed Central  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. doi:10.1037/h0054651.

    Article  Google Scholar 

  • Ulrich, R., & Miller, J. (2001). Using the jackknife-based scoring method for measuring LRP onset effects in factorial designs. Psychophysiology, 38(5), 816–827.

    Article  PubMed  Google Scholar 

  • Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: the leaky, competing accumulator model. Psychological Review, 108(3), 550–592. doi:10.1037//0033-295X.108.3.550.

    Article  PubMed  Google Scholar 

  • Van der Lubbe, R. H. J., Jaśkowski, P., Wauschkuhn, B., & Verleger, R. (2001). Influence of time pressure in a simple response task, a choice-by-location task, and the Simon task. Journal of Psychophysiology, 15(4), 241–255. doi:10.1027//0269-8803.15.4.241.

    Article  Google Scholar 

  • Van Veen, V., Krug, M. K., & Carter, C. S. (2008). The neural and computational basis of controlled speed-accuracy tradeoff during task performance. Journal of Cognitive Neuroscience, 20(11), 1952–1965. doi:10.1162/jocn.2008.20146.

    Article  PubMed  Google Scholar 

  • Vandekerckhove, J., Tuerlinckx, F., & Lee, M.D. (2008). A Bayesian approach to diffusion process models of decision-making. In V. Sloutsky, B. Love, & K. McRae (Eds.), Proceedings of the 30th Annual Conference of the Cognitive Science Society (pp. 1429–1434). Austin.

  • Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology: a practical introduction. Experimental Psychology, 60, 385–402. doi:10.1027/1618-3169/a000218.

    Google Scholar 

  • White, C. N., Ratcliff, R., & Starns, J. J. (2011). Diffusion models of the flanker task: discrete versus gradual attentional selection. Cognitive Psychology, 63(4), 210–238. doi:10.1016/j.cogpsych.2011.08.001.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica, 41(1), 67–85. doi:10.1016/0001-6918(77)90012-9.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Michaela Rach for data acquisition and Leendert van Maanen for valuable comments on a previous version of this article. This research was supported by the German Research Foundation (DFG) through research unit FOR 1882 Psychoeconomics.

Conflict of interest

The authors declare that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Dambacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dambacher, M., Hübner, R. Time pressure affects the efficiency of perceptual processing in decisions under conflict. Psychological Research 79, 83–94 (2015). https://doi.org/10.1007/s00426-014-0542-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-014-0542-z

Keywords

Navigation