Skip to main content
Log in

Control by action representation and input selection (CARIS): a theoretical framework for task switching

  • Original Article
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Control by action representation and input selection (CARIS) is a modeling framework for task-switching experiments, which considers action-related effects as critical constraints. It assumes that control operates by choosing control parameter values, representing input selection and action representation. Competing CARIS models differ in whether (a) control parameters are determined by current instructions or represent a perseveration, (b) current instructions apply to the input selection and/or to action representation. According to the chosen model (a) task execution results in a default bias in favor of the executed task thus creating perseverative tendencies; (b) control counteracts these tendencies by applying a transient momentary bias whose locus (input selection or action representation) changes as a function of task preparation time; (c) this happens because the task-cue (e.g., SHAPE) initially attracts attention to the immediately available cue-information (e.g., target shape) and then attracts it to inferred or retrieved information (e.g., “circle” is related to the right key press).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. A numerical example will clarify this point. In Model 1, response representation is perseverative. Let us assume for example that w A = 0.51. A switch from SHAPE to SIZE would result in representing Response A and Response B as (.49 0 .51 0) and (0 .49 0 .51). (Note that in both the cases, the weight given to the relevant feature, size, is smaller than that given to the irrelevant feature, shape, reflecting the fact that shape was relevant in Trial n − 1). If the response used to indicate LARGE and CIRCLE is repeated w A−REPEAT = w A  w CR (where w A−REPEAT represents w A for the repeated response) and the selection vector for Response A becomes \( {\left( {\begin{array}{*{20}c} {{.49 - w_{{{\text{CR}}}} }} \\ {{.49 - w_{{{\text{CR}}}} }} \\ {{.51 + w_{{{\text{CR}}}} }} \\ {{.51 + w_{{{\text{CR}}}} }} \\ \end{array} } \right)} \) If w CR = .03, the selection vector for Response A in the present example becomes \( {\left( {\begin{array}{*{20}c} {{.46}} \\ {{.46}} \\ {{.54}} \\ {{.54}} \\ \end{array} } \right)}. \) Note that the selection vector is translated into a response representation such as \( {\left( {\begin{array}{*{20}c} {{.46}} \\ {0} \\ {{.54}} \\ {0} \\ \end{array} } \right)}, \) for example. This implies that the bias in favor of the emphasized dimension in Response A is increased relative to Response B, for which the bias vector would be \( {\left( {\begin{array}{*{20}c} {{.49}} \\ {{.49}} \\ {{.51}} \\ {{.51}} \\ \end{array} } \right)} \) with a response representation that may be \( {\left( {\begin{array}{*{20}c} {0} \\ {{.49}} \\ {0} \\ {{.51}} \\ \end{array} } \right)} \) keeping in line with the example. Given that the emphasis is based on the n−1st task, it is counterproductive in switch trials, and becomes even more counterproductive if the response is repeated.

  2. In comparison, the number of significant degrees of freedom (including the intercept term) in the standard 5-way ANOVA was 21 (actually almost 22 because of an additional parameter with p = 0.059). To determine these numbers we needed to break down the 2-df Switch variable into orthogonal contrast. The contrasts were switch cost: switch vs. repeat, and mixing cost: switch + repeat vs. single task. This was done for the main effect of Switch and all the interactions involving Switch).

  3. Specifically, response selection is based on a competition between the correct response and the incorrect response. In congruent trials, no such competition exists because the irrelevant stimulus dimension activates the correct response. Competition arises in incongruent trials because the irrelevant stimulus dimension activates a competing response. Correct responding in these trials therefore depends on the fact that the correct response is more potent than the incorrect response. Without loss of generality, let us consider a special case in which the two response keys are: \( R_{{{\text{A(LARGE - CIRCLE)}}}} = {\left( {\begin{array}{*{20}c} {1} & {0} & {1} & {0} \\ \end{array} } \right)} \) and \( R_{{{\text{B(SMALL - SQUARE)}}}} = {\left( {\begin{array}{*{20}c} {0} & {1} & {0} & {1} \\ \end{array} } \right)} \) and an incongruent target, say, \( S_{{{\text{LARGE - SQUARE}}}} = {\left( {\begin{array}{*{20}c} {1} & {0} & {0} & {1} \\ \end{array} } \right)}. \) Let us assume further that the task is SIZE. In such a case, the correct response is R A (the target is LARGE). The potency for that response according to Model 1 is either w S · w R in the case of a task repetition or w S · (1 − w R) in the case of a task switch. The potency of the competing response R B is (1 − w S) · (1 − w R) in the case of a task repetition and (1 − w S) · w R in the case of a task switch. For R A to be chosen, the following inequality must hold: P Response-A  P Response-B. Replacing P Response-A and P Response-B with their values, as defined above shows that the inequality translates into w S > (1 − w R) for task repetitions and into w S  w R for task switches. The competition between the two responses becomes even stronger in the case of a response repetition, where w A is replaced by w A + w CR. Less formally, the processing strategy represented by Model 1 ensures correct responding by a strong-enough input selection that overcomes the counterproductive adjustment of action representation. Similarly, Model 2 strategy ensures correct responding by a strong enough bias in the action representation which counteracts the counterproductive adjustment in input selection.

  4. Because the exponential distribution has only one parameter, Lambda, this parameter dictates both the variance (1/Lambda square) and the mean value (1/Lambda). Having decided to maintain the mean value the same as that estimated (Table 2) could have implicated that we could not vary the distribution to enable better fit to the data. To allow more freedom there, we changed Lambda and added a constant so that the variance could change without changing the mean.

References

  • Ach, N. (2006). On volition (T. Herz, Trans.). (Original work published 1910) Retrieved from University of Konstanz, Cognitive Psychology Web site: http://www.uni-konstanz.de/kogpsych/ach.htm.

  • Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In: C. Umiltà, & M. Moscovitch (Eds.), Attention and Performance XV: Conscious and Unconscious Processing (pp. 421–452). Cambridge, MA: MIT Press.

    Google Scholar 

  • Allport, A., & Wylie, G. (2000). ‘Task-switching’, stimulus-response bindings and negative priming. In: S. Monsell, & J. Driver (Eds.), Attention and Performance XVIII: Control of Cognitive Processes (pp. 35–70). Cambridge, MA: MIT Press.

    Google Scholar 

  • Altmann, E. M. (2006). Task switching is not cue switching. Psychonomic Bulletin & Review, 13, 1016–1022.

    Google Scholar 

  • Altmann, E. M. (2007). Comparing switch costs: Alternating runs and explicit cuing. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 475–483.

    Article  PubMed  Google Scholar 

  • Altmann, E. M., & Gray, W. D. (2002). Forgetting to remember: The functional relationship of decay and interference. Psychological Science, 13, 27–33.

    Article  PubMed  Google Scholar 

  • Arrington, C. M., Logan, G. D., & Schneider, D. W. (2007). Separating cue encoding from target processing in the explicit task cuing procedure. Are there “true” task switch effects? Journal of Experimental Psychology: Learning, Memory, & Cognition, 33, 484–502.

    Article  Google Scholar 

  • Badre, D., & Wagner, A. D. (2006). Computational and neurobiological mechanisms underlying cognitive flexibility. PNAS, 103, 7186–7191.

    Article  PubMed  Google Scholar 

  • Brass, M., Ruge, H., Meiran, N., Rubin, O., Koch, I, Zysset, S., Prinz, W., & von Cramon, D. Y. (2003). When the same response has different meaning: Recoding the response meaning in the lateral prefrontal cortex. NeuroImage, 20, 1026–1031.

    Article  PubMed  Google Scholar 

  • Braver, T. S., Reynolds, J. R., & Donaldson, D. I. (2003). Neural mechanisms of transient and sustained cognitive control during task switching. Neuron, 39, 713–726.

    Article  PubMed  Google Scholar 

  • Brown, J. W., Reynolds, J. R., & Braver, T. S. (2007). A computational model of fractionated conflict-control mechanisms in task switching. Cognitive Psychology, 55, 37–85.

    Article  PubMed  Google Scholar 

  • Campbell, K. C., & Proctor, R. W. (1993). Repetition effects with categorizable stimulus and response sets. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19, 1345–1362.

    Article  Google Scholar 

  • De Jong, R. (1995). Strategical determinants of compatibility effects with task uncertainty. Acta Psychologica, 88, 187–207.

    Article  Google Scholar 

  • De Jong, R. (2000). An intention-activation account of residual switch costs. In: S. Monsell, & J. Driver (Eds.), Attention and Performance XVIII: Control of Cognitive Processes (pp. 357–376). Cambridge, MA: MIT Press.

    Google Scholar 

  • De Pisapia, N, & Braver, T. S. (2006). A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. Neurocomputing, 69, 1322–1326.

    Article  Google Scholar 

  • Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193–222.

    Article  PubMed  Google Scholar 

  • Diamond, A. (1985). Development of the ability use to recall to guide action, as indicated by infant’s performance on AB. Child Development, 56, 868–883.

    Article  PubMed  Google Scholar 

  • Dreisbach, G., Goschke, T., & Haider, H. (2006). Implicit task sets during task switching? Journal of Experimental Psychology: Learning, Memory and Cognition, 32, 1221–1233.

    Article  Google Scholar 

  • Fagot, C. (1994). Chronometric investigations of task switching. Unpublished PhD Thesis, University of California, San Diego.

  • Fey, E. T. (1951). The performance of young schizophrenics and young normals on the Wisconsin Card Sorting Test. Journal of Consulting Psychology, 15, 311–319.

    Article  PubMed  Google Scholar 

  • Gade, M., & Koch, I. (2007a). Cue-task associations in task switching. The Quarterly Journal of Experimental Psychology, 60, 762–769.

    Article  PubMed  Google Scholar 

  • Gade, M., & Koch, I. (2007b). The influence of overlapping response sets on task inhibition. Memory & Cognition, 35, 603–609.

    Google Scholar 

  • Gilbert, S. J., & Shallice, T. (2002). Task switching: A PDP model. Cognitive Psychology, 44, 297–337.

    Article  PubMed  Google Scholar 

  • Goschke, T. (2000). Intentional reconfiguration and involuntary persistence in task-set switching. In: S. Monsell, & J. Driver (Eds.), Attention and Performance XVIII: Control of Cognitive Processes (pp. 331–355). Cambridge, MA: MIT Press.

    Google Scholar 

  • Hackley, S. A., & Valle-Inclan, F. (1998). Automatic alerting does not speed late motoric processes in a reaction-time task. Nature, 391, 786–788.

    Article  PubMed  Google Scholar 

  • Hackley, S. A., & Valle-Inclan, F. (1999). Accessory stimulus effects on response selection: Does arousal speed decision making? Journal of Cognitive Neuroscience, 11, 321–329.

    Article  PubMed  Google Scholar 

  • Hintzman, D. L. (1986). “Schema abstraction” in a multiple-trace memory model. Psychological Review, 93, 411–428.

    Article  Google Scholar 

  • Hoffmann, J., Kiesel, A., & Sebald, A. (2003). Task switches under go/nogo conditions and the decomposition of switch costs. European Journal of Cognitive Psychology, 15, 101–128.

    Article  Google Scholar 

  • Hommel, B. (1993). Inverting the Simon effect by intention: Determinants of direction and extent of effects of irrelevant spatial information. Psychological Research, 55, 270–279.

    Article  Google Scholar 

  • Hommel, B., Müsseler, J., Aschersleben, G., & Prinz, W. (2001). The theory of event coding (TEC): A framework for perception and action planning. Behavioral and Brain Sciences, 24, 849–937.

    Article  PubMed  Google Scholar 

  • Hübner, R., & Druey, M. (2006). Response execution, selection, or activation: What is sufficient for response-related repetition effects under task shifting? Psychological Research, 70, 245–261.

    Article  PubMed  Google Scholar 

  • Kleinsorge, T. (1999). Response repetition benefits and costs. Acta Psychologica, 103, 295–310.

    Article  PubMed  Google Scholar 

  • Kleinsorge, T., & Heuer, H. (1999). Hierarchical switching in a multi-dimensional task space. Psychological Research, 62, 300–312.

    Article  Google Scholar 

  • Koch, I. (2005). Sequential task predictability in task switching. Psychonomic Bulletin & Review, 12, 107–112.

    Google Scholar 

  • Koch, I., & Allport, A. (2006). Cue-based preparation and stimulus-based priming of tasks in task switching. Memory & Cognition, 34, 433-444.

    Google Scholar 

  • Koch, I., & Philipp, A. M. (2005). Effects of response selection on the task-repetition benefit in task switching. Memory & Cognition, 33, 624–634.

    Google Scholar 

  • Lavie, N. (1995). Perceptual load as a necessary condition for selective attention. Journal of Experimental Psychology: Human Perception and Performance, 21, 451–468.

    Article  PubMed  Google Scholar 

  • Loehlin, J. C. (1987). Latent variable models: An introduction to factor, path, and structural analysis. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Logan, G. D., & Bundesen, C. (2003). Clever homunculus: Is there an endogenous act of control in the explicit task-cuing procedure? Journal of Experimental Psychology: Human Perception and Performance, 29, 575–599.

    Article  PubMed  Google Scholar 

  • Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108, 393–434.

    Article  PubMed  Google Scholar 

  • Lorch, R. F., & Myers, J. L. (1990). Regression analysis of repeated measures data in cognitive research. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16, 149–157.

    Article  PubMed  Google Scholar 

  • Los, S. A. (1996). On the origin of mixing costs: Exploring information processing in pure and mixed blocks of trials. Acta Psychologica, 94, 145–188.

    Article  Google Scholar 

  • Luria, R., & Meiran, N. (2003). Online order control in the psychological refractory period paradigm. Journal of Experimental Psychology: Human Perception and Performance, 29, 556–574.

    Article  PubMed  Google Scholar 

  • Luria, R., & Meiran, N. (2006). Dual route for subtask order control: Evidence from the Psychological Refractory Period paradigm. Quarterly Journal of Experimental Psychology: Section A, 59, 720–744.

    Google Scholar 

  • Mayr, U. (2001). Age differences in the selection of mental sets: The role of inhibition, stimulus ambiguity, and response-set overlap. Psychology and Aging, 16, 96–109.

    Article  PubMed  Google Scholar 

  • Mayr, U., & Bryck, R. L. (2005). Sticky rules: integration between abstract rules and specific actions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 337–350.

    Article  PubMed  Google Scholar 

  • Mayr, U., & Keele, S. W. (2000). Changing internal constraints on action: The role of backward inhibition. Journal of Experimental Psychology: General, 129, 4–26.

    Article  Google Scholar 

  • Mayr, U., & Kliegl, R. (2000). Task-set switching and long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory and Cognition, 26, 1124–1140.

    Article  Google Scholar 

  • Mayr, U., & Kliegl, R. (2003). Differential effects of cue changes and task changes on task-set selection costs. Journal of Experimental Psychology: Learning, Memory and Cognition, 29, 362–372.

    Article  Google Scholar 

  • Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory and Cognition, 22, 1423–1442.

    Article  Google Scholar 

  • Meiran, N. (2000a). Modeling cognitive control in task-switching. Psychological Research, 63, 234–249.

    Article  PubMed  Google Scholar 

  • Meiran, N. (2000b). The reconfiguration of the stimulus task-set and the response task set during task switching. In: S. Monsell, & J. Driver (Eds.), Attention and Performance XVIII: Control of Cognitive Processes (pp. 377–400). Cambridge, MA: MIT Press.

    Google Scholar 

  • Meiran, N. (2005). Task rule congruency and Simon-like effects in switching between spatial tasks. Quarterly Journal of Experimental Psychology: Section A, 58A, 1023–1041.

    Google Scholar 

  • Meiran, N. (2008a). Task switching: Mechanisms underlying rigid vs. flexible self control. In: R. Hassin, K. Ochsner, & Y. Trope (Eds.) Social Cognition and Social Neuroscience, NY: Oxford University Press (in press).

  • Meiran, N. (2008b). The dual implication of dual affordance: Stimulus-task binding and attentional focus changing during task preparation. Experimental Psychology. doi:10.1027/1618-3169.55.4.252.

  • Meiran, N., & Chorev, Z. (2005). Phasic alertness and the residual task-switch cost. Experimental Psychology, 52, 109–124.

    PubMed  Google Scholar 

  • Meiran, N., Chorev, Z., & Sapir, A. (2000). Component processes in task switching. Cognitive Psychology, 41, 211–253.

    Article  PubMed  Google Scholar 

  • Meiran, N., & Daichman, A. (2005). Advance task preparation reduces task error rate in the cueing task-switching paradigm. Memory and Cognition, 33, 1272–1288.

    Google Scholar 

  • Meiran, N., Gotler, A., & Perlman, A. (2001). Old age is associated with a pattern of relatively intact and relatively impaired task-set switching abilities. The Journals of Gerontology: Series B: Psychological Sciences and Social Sciences, 56B, 88–102.

    Google Scholar 

  • Meiran, N. & Kessler, Y. (2008). The task rule congruency effect in task switching reflects activated long term memory. Journal of Experimental Psychology: Human Perception and Performance, 34, 137–157.

    Article  PubMed  Google Scholar 

  • Meiran, N., Levine, J., Meiran, N., & Henik, A. (2000). Task set switching in schizophrenia. Neuropsychology, 14, 471–482.

    Article  PubMed  Google Scholar 

  • Meiran, N., & Marciano, H. (2002). Limitations in advance task preparation: Switching the relevant stimulus dimension in speeded same-different comparisons. Memory & Cognition, 30, 540–550.

    Google Scholar 

  • Meuter, R. F. I., & Allport, A. (1999). Bilingual language switching in naming: Asymmetrical costs of language selection. Journal of Memory and Language, 40, 25–40.

    Article  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  PubMed  Google Scholar 

  • Milner, B. (1964). Some effects of frontal lobectomy in man. In: J. M. Warren, & K. Akert (Eds.), The Frontal Granular Cortex and Behavior (pp. 313–334). New York: McGraw-Hill.

    Google Scholar 

  • Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7, 134–140.

    Article  PubMed  Google Scholar 

  • Monsell, S., & Mizon, G. A. (2006). Can the task cuing paradigm measure an “endogenous” task set reconfiguration process? Journal of Experimental Psychology: Human Perception and Performance, 32, 493–516.

    Article  PubMed  Google Scholar 

  • Monsell, S., Sumner, P., & Waters, H. (2003). Task-set reconfiguration with predictable and unpredictable task switches. Memory and Cognition, 31, 327–342.

    Google Scholar 

  • Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In: R. J. Davidson, G. E. Schwartz, & D. Shapiro (Eds.) Consciousness and self-regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York: Plenum.

  • Pashler, H. (1991). Shifting visual attention and selecting motor responses: Distinct attentional mechanisms. Journal of Experimental Psychology: Human Perception and Performance, 17, 1023–1040.

    Article  PubMed  Google Scholar 

  • Pashler, H., & Baylis, G. (1991). Procedural learning: 2. Intertrial repetition effects in speeded-choice tasks. Journal of Experimental Psychology: Learning, Memory and Cognition, 17, 33–48.

    Article  Google Scholar 

  • Philipp, A. M., Jolicœur, P., Falkenstein, M., & Koch, I. (2007). Response selection and response execution in task switching: Evidence from a go-signal paradigm. Journal of Experimental Psychology: Learning, Memory and Cognition, 33, 1062–1075.

    Article  Google Scholar 

  • Philipp, A. M., & Koch, I. (2005). Switching of response modalities. Quarterly Journal of Experimental Psychology A: Human Experimental Psychology, 58A, 1325–1338.

    Google Scholar 

  • Piaget, J. (1954). The construction of reality in the child. New York: Basic Books.

    Google Scholar 

  • Pitt, M. A., Kim, W., Navarro, D. J., & Myung, J. I. (2006). Global model analysis by parameter space partitioning. Psychological Review, 113, 57–83.

    Article  PubMed  Google Scholar 

  • Quinlan, P. T., & Hill, N. I. (1999). Sequential effects in rudimentary auditory and visual tasks. Perception & Psychophysics, 61, 375–384.

    Google Scholar 

  • Riefer, D. M., & Batchelder, W. H. (1988). Multinomial modeling and the measurement of cognitive processes. Psychological Review, 95, 318–339.

    Article  Google Scholar 

  • Rogers, R. D., & Monsell, S. (1995). The cost of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124, 207–231.

    Article  Google Scholar 

  • Rubin, O., & Meiran, N. (2005). On the origins of the task mixing cost in the cuing task switching paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 1477–1491.

    Article  PubMed  Google Scholar 

  • Rubinstein, J. S., Meyer, D. E., & Evans, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27, 763–797.

    Article  PubMed  Google Scholar 

  • Ruge, H., Brass, M., Koch, I., Rubin, O., Meiran, N., & von Cramon, D. Y., (2005). Advance preparation and stimulus induced interference in cued task switching: Further insights from BOLD fMRI. Neuropsychologia, 43, 340–355.

    Article  PubMed  Google Scholar 

  • Ruthruff, E., Remington, R. W., & Johnston, J. C. (2001). Switching between simple cognitive tasks: The interaction of top-down and bottom-up factors. Journal of Experimental Psychology: Human Perception and Performance, 27, 1404–1419.

    Article  PubMed  Google Scholar 

  • Schneider, D. W., & Logan, G. D. (2005). Modeling task switching without switching tasks: A short-term memory priming account of explicitly cued performance. Journal of Experimental Psychology: General, 134, 343–367.

    Article  Google Scholar 

  • Schuch, S., & Koch, I. (2003). The role of response selection for inhibition of task sets in task shifting. Journal of Experimental Psychology: Human Perception and Performance, 29, 92–105.

    Article  PubMed  Google Scholar 

  • Schuch, S., & Koch, I. (2004). The cost of changing the representation of action. Journal of Experimental Psychology: Human Perception and Performance, 30, 566–582.

    Article  PubMed  Google Scholar 

  • Shalev, L., & Algom, D. (2000). Stroop and Garner effects in and out of Posner’s beam: Reconciling two conceptions of selective attention. Journal of Experimental Psychology: Human Perception and Performance, 26, 997–1017.

    Article  PubMed  Google Scholar 

  • Sohn, M. H., & Anderson, J. R. (2001). Task preparation and task repetition: Two-component model of task switching. Journal of Experimental Psychology: General, 130, 764–778.

    Article  Google Scholar 

  • Sosna, G. (2001). Practice and transfer in task-switching: The effect of quantity and frequency of switching. Unpublished MA Thesis, Ben-Gurion University of the Negev, Beer-Sheva.

  • Steinhauser, M., & Hübner, R. (2006). Response-based strengthening in task-shifting: Evidence from shift effects produced by errors. Journal of Experimental Psychology: Human Perception and Performance, 32, 517–534.

    Article  PubMed  Google Scholar 

  • Sudevan, P., & Taylor, D.A. (1987). The cueing and priming of cognitive operations. Journal of Experimental Psychology: Human Perception and Performance, 13, 89–103.

    Article  PubMed  Google Scholar 

  • Treisman, A.M. (1969). Strategies and models of selective attention. Psychological Review, 76, 282–299.

    Article  PubMed  Google Scholar 

  • Verbruggen, F., Liefooghe, B., Szmalec, A., & Vandierendonck, A. (2005). Inhibiting responses when switching: Does it matter? Experimental Psychology, 52, 125–130.

    PubMed  Google Scholar 

  • Verbruggen, F., Liefooghe, B., & Vandierendonck, A. (2006). Selective stopping in task switching: The role of response selection and response execution. Experimental Psychology, 53, 48–57.

    PubMed  Google Scholar 

  • Ward, L. M. (1982). Determinants of attention to local and global features of visual forms. Journal of Experimental Psychology: Human Perception and Performance, 8, 562–581.

    Article  PubMed  Google Scholar 

  • Waszak, F., Hommel, B., & Allport, A. (2003). Task-switching and long-term priming: Role of episodic stumulus-task bindings in task-shift costs. Cognitive Psychology, 46, 361–413.

    Article  PubMed  Google Scholar 

  • Woodward, T. S., Meier, B., Tipper, C., & Graf, P. (2003). Bivalency is costly: Bivalent stimuli elicit cautious responding. Experimental Psychology, 50, 233–238.

    PubMed  Google Scholar 

  • Yehene, E., & Meiran, N. (2007). Is there a general task switching ability? Acta Psychologica, 126, 169–195.

    Article  PubMed  Google Scholar 

  • Yehene, E., Meiran, N., & Soroker, N. (2005). Task alternation cost without task alternation: Measuring intentionality. Neuropsychologia, 43, 1858–1869.

    Article  PubMed  Google Scholar 

  • Yehene, E. & Meiran, N., & Soroker, N. (2008). Basal ganglia play a unique role in task switching within the frontal-sub-cortical circuits: Evidence from patients with focal lesions. Journal of Cognitive Neuroscience. doi:10.1162/jocn.2008.20077.

  • Yeung, N., & Monsell, S. (2003a). Switching between tasks of unequal familiarity: The role of stimulus-attribute and response-set selection. Journal of Experimental Psychology: Human Perception and Performance, 29, 455–469.

    Article  PubMed  Google Scholar 

  • Yeung, N., & Monsell, S. (2003b). The effects of recent practice on task switching. Journal of Experimental Psychology: Human Perception and Performance, 29, 919–936.

    Article  PubMed  Google Scholar 

  • Yeung, N., Nystrom, L. E., Aronson, J. A., & Cohen, J. D. (2006). Between-task competition and cognitive control in task switching. The Journal of Neuroscience, 26, 1429 –1438.

    Article  PubMed  Google Scholar 

  • Zelazo, P. D., & Frye, D. (1997). Cognitive complexity and control: A theory of the development of deliberate reasoning and intentional action. In: M. Stamenov (Ed.), Language structure, discourse, and the access to consciousness (pp. 113–153). Amsterdam & Philadelphia: John Benjamins.

    Google Scholar 

  • Zhao, J-H. (2005). A probabilistic mechanics approach to die cracking prediction in flip-chip ball grid array package. IEEE Transactions on Components and Packaging, 28, 390–396.

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by a grant to the first author from the Israel Science Foundation. We thank Thomas Goschke, Thomas Kleinsorge, Erik Altmann, Iring Koch and an anonymous reviewer for their insightful and challenging comments, and Rotem Eren-Rabinovich for English proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nachshon Meiran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meiran, N., Kessler, Y. & Adi-Japha, E. Control by action representation and input selection (CARIS): a theoretical framework for task switching. Psychological Research 72, 473–500 (2008). https://doi.org/10.1007/s00426-008-0136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-008-0136-8

Keywords

Navigation