Skip to main content
Log in

Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Polarisation Fourier transform infra-red (FTIR) microspectroscopy was used to characterize the organisation and orientation of wood polymers in normal wood and tension wood from hybrid aspen (Populus tremula × Populus tremuloides). It is shown that both xylan and lignin in normal wood are highly oriented in the fibre wall. Their orientation is parallel with the cellulose microfibrils and hence in the direction of the fibre axis. In tension wood a similar orientation of lignin was found. However, in tension wood absorption peaks normally assigned to xylan exhibited a 90° change in the orientation dependence of the vibrations as compared with normal wood. The molecular origin of these vibrations are not known, but they are abundant enough to mask the orientation dependence of the xylan signal from the S2 layer in tension wood and could possibly come from other pentose sugars present in, or associated with, the gelatinous layer of tension wood fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

FTIR:

Fourier transform infra-red

G-layer:

Gelatinous layer

MFA:

Microfibril angle

n :

Statistical number of samples

RA:

Relative absorbance

S2 :

Layer secondary middle layer

SD:

Standard deviation

References

  • Agarwal UP, Atalla RH (1986) In situ Raman microprobe studies of plant cell walls: macromolecular organization and compositional variability in the secondary wall of Picea mariana (Mill.) B.S.P. Planta 169:325–332

    Article  CAS  Google Scholar 

  • Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42:963–969

    Article  Google Scholar 

  • Åkerholm M, Salmén L (2003) The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR. Holzforschung 57:459–465

    Article  Google Scholar 

  • Åkerholm M, Hinterstoisser B, Salmén L (2004) Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy. Carbohydr Res 339:569–578

    Article  PubMed  Google Scholar 

  • Atalla RH, Agarwal UP (1985) Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Science 227:636–639

    Article  PubMed  CAS  Google Scholar 

  • Baeza J, Freer J (2001) Chemical characterization of wood and its components. In: Hon DN-S, Shiraishi N (eds) Wood and cellulose chemistry. Marcel Dekker Inc, New York, pp 275–384

    Google Scholar 

  • Bowling AJ, Vaughn KC (2008) Immunocytochemical characterization of tensin wood: gelatinous fibres contain more than just cellulose. Am J Bot 95:655–663

    Article  Google Scholar 

  • Clair B, Gril J, Di Renzo F, Yamamoto H, Quignard F (2008) Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromol 9:494–498

    Article  CAS  Google Scholar 

  • Dammström S, Salmén L, Gatenholm P (2009) On the interaction between cellulose and xylan, a biomimetic bacterial simulation of the hardwood cell wall. Bioresources 4:3–14

    Google Scholar 

  • Faix O (1991) Classification of lignins from different botanical origins by FTIR spectroscopy. Holzforschung 45:21–27

    Article  CAS  Google Scholar 

  • Fujita M, Saiki H, Harada H (1974) Electron microscopy of microtubules and cellulose microfibrils in secondary wall formation of poplar tension wood fibres. Mokuzai Gakkaishi 20:147–156

    Google Scholar 

  • Furuya N, Takahashi S, Miyazaki M (1970) The chemical composition of gelatinous layer from the tension wood of Populus euroamericana. J Jap Wood Res Soc 16:26–30

    CAS  Google Scholar 

  • Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibers followed by Raman microscopy. Biomacromolecules 7:2077–2081

    Article  PubMed  CAS  Google Scholar 

  • Goswami L, Dunlop JWC, Jungnikl K, Eder M, Gierlinger N, Coutand C, Jeronimidis G, Fratzl P, Burgert I (2008) Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. Plant J 56:531–538

    Article  PubMed  CAS  Google Scholar 

  • Hayashi H, Kaida R, Kaku T, Baba K (2010) Loosening xyloglucan prevents tensile stress in tree stem bending but accelerates the enzymatic degradation of cellulose. Russian J Plant Physiol 57:334–338

    Article  Google Scholar 

  • Hedenström M, Wiklund-Lindström S, Öman T, Lu F, Gerber L, Schatz P, Sundberg B, Ralph J (2009) Identification of lignin and polysaccharide modifications in Populus wood by chemometric analysis of 2D NMR spectra from dissolved cell walls. Mol Plant 2:933–942

    Article  PubMed  Google Scholar 

  • Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135:212–220

    Article  PubMed  CAS  Google Scholar 

  • Joseleau J-P, Imai T, Kuroda K, Ruel K (2004) Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides. Planta 219:338–345

    Article  PubMed  CAS  Google Scholar 

  • Jurasek L (1998) Molecular modelling of fibre walls. J Pulp Pap Sci 24:209–212

    CAS  Google Scholar 

  • Kacurakova M, Capek P, Sasinkova V, Wellner N, Ebringerova A (2000) FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 43:195–203

    Google Scholar 

  • Lehringer C, Gierlinger N, Koch G (2008) Topochemical investigation on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Holzforschung 62:255–263

    Article  CAS  Google Scholar 

  • Lehringer C, Daniel G, Schmitt U (2009) TEM/FE-SEM studies on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. Wood Sci Technol 43:691–702

    Article  CAS  Google Scholar 

  • Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides. II. Native celluloses in the region from 640–1,700 cm−1. J Polym Sci 39:269–278

    Article  CAS  Google Scholar 

  • Marchessault RH (1962) Application of infra-red spectroscopy to cellulose and wood polysaccharides. Pure Appl Chem 5:107–129

    Article  CAS  Google Scholar 

  • Marchessault RH, Liang CY (1962) The infrared spectra of crystalline polysaccharides. VIII xylans. J Pol Sci 59:357–378

    Article  CAS  Google Scholar 

  • Marechal Y, Chanzy H (2000) The hydrogen bond network in Iβ cellulose as observed by infrared spectrometry. J Mol Struc 523:183–196

    Article  CAS  Google Scholar 

  • Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R, Brumer H, Teeri T, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar—a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855

    Article  PubMed  CAS  Google Scholar 

  • Norberg H, Meier H (1966) Physical and chemical properties of the gelatinous layer of tension wood fibre of aspen (Populus tremula L.). Holzforschung 20:174–178

    Article  CAS  Google Scholar 

  • Page DH (1976) A note on the cell-wall structure of softwood tracheids. Wood Fiber 7:246–248

    CAS  Google Scholar 

  • Pilate G, Chabbert B, Cathala B, Yoshinaga A, Leple J-C, Laurans F, Lapierre C, Ruel K (2004) Lignification and tension wood. Comptes Rendus Biologies 327:889–901

    Article  PubMed  CAS  Google Scholar 

  • Ruel K, Joseleau J-P (2005) Deposition of hemicelluloses and lignins during secondary wood cell wall assembly. In: Entwistle KM, Walker JCF (eds) The hemicelluloses workshop 2005. University of Canterbury, Christchurch, pp 103–113

    Google Scholar 

  • Ruel K, Joseleau J-P, Comtat J, Barnoud F (1976) Ultrastructural localization of xylans in the developing cell wall of graminnae fibers by the use of an endoxylanase. Appl Pol Symp 28:971–981

    CAS  Google Scholar 

  • Salmén L (2007) The mechanical deformation of wood—relation to ultrastructure. In: Entwistle KM, Harris P, Walker JCF (eds) The comprised wood workshop 2007. University of Canterbury, Christchurch, pp 143–157

    Google Scholar 

  • Salmén L, Burgert I (2009) Cell wall features with regard to mechanical properties. Holzforschung 63:121–129

    Article  Google Scholar 

  • Sandquist D, Filonova L, von Schantz L, Ohlin M, Daniel G (2010) Microdistribution of xyloglucan in differentiating poplar cells. Bioresources 5:796–807

    CAS  Google Scholar 

  • Scurfield G (1972) Histochemistry of reaction wood cell walls in two species of Eucalyptus and in Tristania conferta. Aust J Bot 20:9–26

    Article  CAS  Google Scholar 

  • Stevanic J, Salmén L (2009) Orientation of the wood polymers in spruce wood fibres. Holzforschung 63:497–503

    Article  CAS  Google Scholar 

  • Stuart S-A, Evans R (1995) X-ray diffraction estimation of the microfibril angle variation in eucalypt wood. Appita 48:197–200

    Google Scholar 

  • Terashima N (1990) A new mechanism for formation of a structurally ordered protolignin macromolecule in the cell wall of tree xylem. J Pulp Pap Sci 16:J150–J155

    CAS  Google Scholar 

  • Timell TE (1969) Chemical composition of tension wood. Sv Papperstidning 72:173–181

    CAS  Google Scholar 

  • Wang HH, Drummond JG, Reath SM, Hunt K, Watson PA (2001) An improved fibril angle measurement method for wood fibres. Wood Sci Technol 34:493–503

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed within Biomime, the Swedish Centre for Biomimetic Fibre Engineering, a multidisciplinary Centre of Excellence comprising collaborative groups from the Schools of Biotechnology and Chemical Science and Engineering at The Royal Institute of Technology (KTH), the Umeå Plant Science Centre (UPSC) and Innventia. Funding was also supplied through FuncFiber—a FORMAS funded excellence centre in wood science, Bio4Energy as well as the Wallenberg Wood Science Center (WWSC) of the KTH, Royal Institute of Technology, and Chalmers, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lennart Salmén.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 299 kb)

Supplementary material 2 (DOC 329 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olsson, AM., Bjurhager, I., Gerber, L. et al. Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy. Planta 233, 1277–1286 (2011). https://doi.org/10.1007/s00425-011-1384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1384-1

Keywords

Navigation