Skip to main content
Log in

The effect of exogenous methyl jasmonate on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica napus L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The oilseed rape plant’s transition from the vegetative to the reproductive stage is important to its yield. This transition is controlled by a large group of flowering time genes that respond to environmental and endogenous cues. The role of jasmonates in flowering is almost unknown in Brassicaceae, even in the genus Arabidopsis. In this paper, the clear effect of exogenous methyl jasmonate (MeJA) on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in floral development is shown. In controlled greenhouse experiments, we found that the effect of MeJA depended on both plant genotype and jasmonate dosage. MeJA promoted maximum flowering when it was applied to the cultivars of early flowering types of oilseed rape, such as cultivars Mei-Jian and Fu-You 4. In addition, a concentration of 100 μM resulted in the most number of early open flowers, in comparison with the results obtained for concentrations of 50 and 80 μM. Furthermore, the application of high concentrations of MeJA (100 μM) also produced various kinds of abnormal flowers. Our results demonstrated that the combined actions of the floral identity genes, specifically BnAP1, BnAP2, BnAP3, BnAG1, and BnPI3, as reflected by their respective relative transcript levels, were responsible for causing the different kinds of flower abnormalities previously undescribed in oilseed rape. We expect our assay to be an enriching addition to the body of work that attempts to understand the signaling function of jasmonates in the floral inductive pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AG :

AGAMOUSE

AP :

APETALA

COI :

CORONATINE INSENSITIVE

DAD :

DEFECTIVE IN ANTHER DEHISCENCE

EOIMB:

Early opened immature bud

GA:

Gibberellins

KNAT :

KNOTTED like from Arabidopsis thaliana

MeJA:

Methyl jasmonate

MYB:

Myeloblastosis

OPR :

OPDA REDUCTASE

PI :

PISTILATA

SHA :

SHOOT APICAL MERISTEM ARRESTED

References

  • Albrechtova JTP, Ullmann L (1994) Methyl jasmonate inhibits growth and flowering in Chenopodium rubrum. Biol Plant 36:317–319

    Article  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Barendse GWM, Croes AF, van den Ende G, Bosveld M, Creemers T (1985) Role of hormones on flower bud formation in thin-layer explant of tobacco. Biol Plant (Praha) 27:408–412

    CAS  Google Scholar 

  • Bevan M, Walsh S (2005) The Arabidopsis genome: a foundation for plant research. Genome Res 15:1632–1642

    Article  CAS  PubMed  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1991) Genetic interactions among floral homeotic genes of Arabidopsis. Development 112:1–20

    CAS  PubMed  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Cheng H, Song S, Xiao L, Soo HM, Cheng Z, Xie D, Peng J (2009) Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genet 5:e1000440

    Article  PubMed  CAS  Google Scholar 

  • Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127:725–734

    CAS  PubMed  Google Scholar 

  • Gu Q, Ferrandiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517

    CAS  PubMed  Google Scholar 

  • Haberer G, Mader MT, Kosarev P, Spannagl M, Yang L, Mayer KFX (2006) Large-scale cis-element detection by analysis of correlated expression and sequence conservation between Arabidopsis and Brassica oleracea. Plant Physiol 142:1589–1602

    Article  CAS  PubMed  Google Scholar 

  • Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13–19

    Article  CAS  PubMed  Google Scholar 

  • Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K (2007) Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci USA 104:6478–6483

    Article  CAS  PubMed  Google Scholar 

  • Irish VF, Sussex IM (1990) Function of the apetala-1 gene during Arabidopsis floral development. Plant Cell 2:741–753

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro S, Kawai-Oda A, Ueda J, Nishida I, Okada K (2001) The DEFECTIVE IN ANTHER DEHISCIENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13:2191–2209

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Ng K, Lim T, Yu H, Meyerowitz EM (2007) The homeotic protein AGAMOUS controls late stamen development by regulating a jasmonate biosynthetic gene in Arabidopsis. Plant Cell 19:3516–3529

    Article  CAS  PubMed  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanism of floral control. Plant Cell 16:1–17

    Article  Google Scholar 

  • Jofuku KD, den Boer BGW, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    Article  CAS  PubMed  Google Scholar 

  • Kempin SA, Savidge B, Yanofsky MF (1995) Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267:522–525

    Article  CAS  PubMed  Google Scholar 

  • Krajnčič B, Nemec J (1995) The effect of jasmonic acid on flowering in Spirodela polyrrhiza (L.) Schleiden. J Plant Physiol 146:754–756

    Google Scholar 

  • Li L, Zhao Y, McCaig BC, Wingerd BA, Wang J, Whalon ME, Pichersky E, Howe GA (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. Plant Cell 16:126–143

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park B-S, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444

    CAS  PubMed  Google Scholar 

  • Maciejewska B, Kopcewicz J (2002) Inhibitory effect of methyl jasmonate on flowering and elongation growth in Pharbitis nil. J Plant Growth Regul 21:216–223

    Article  CAS  Google Scholar 

  • Mandaokar A, Browser J (2009) MYB108 acts together with MYB24 to regulate jasmonate-mediated stamen maturation in Arabidopsis. Plant Physiol 149:851–862

    Article  CAS  PubMed  Google Scholar 

  • Meyerowitz EM, Bowman JL, Brockman LL, Drews GN, Jack T, Sieburth LE, Weigel D (1991) A genetic and molecular model for flower development in Arabidopsis thaliana. Development 113(Suppl 1):157–167

    Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  CAS  PubMed  Google Scholar 

  • Osborn TC, Kole C, Parkin IAP, Shappe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thalianica. Genetics 146:1123–1129

    CAS  PubMed  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  CAS  PubMed  Google Scholar 

  • Pelaz S, Gustafson-Brown C, Kohalmi SE, Crosby WL, Yanofsky MF (2001a) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26:385–394

    Article  CAS  PubMed  Google Scholar 

  • Pelaz S, Tapia-Lopez R, Alvarez-Buylla ER, Yanofsky MF (2001b) Conversion of leaves into petals in Arabidopsis. Curr Biol 11:182–184

    Article  CAS  PubMed  Google Scholar 

  • Petroni K, Tonelli C, Paz-Ares J (2002) The MYB transcription factor family: from maize to Arabidopsis. Maydica 47:3–4

    Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857

    Article  CAS  PubMed  Google Scholar 

  • Quesada V, Macknight R, Dean C, Simpson GG (2003) Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J 22:3142–3152

    Article  CAS  PubMed  Google Scholar 

  • Ragni L, Belles-Boix E, Günl M, Pautot V (2008) Interaction of KNAT6 and KNAT2 with BREVIPEDICELLUS and PENNYWISE in Arabidopsis inflorescences. Plant Cell 20:888–900

    Article  CAS  PubMed  Google Scholar 

  • Reeves PH, Coupland G (2000) Response of plant development to environment: control of flowering by daylength and temperature. Curr Opin Plant Biol 3:37–42

    Article  CAS  PubMed  Google Scholar 

  • Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12:1041–1061

    Article  CAS  PubMed  Google Scholar 

  • Schultz EA, Haughn GW (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3:771–781

    Article  PubMed  Google Scholar 

  • Shin B, Choi G, Yi H, Yang S, Cho I, Kim J, Lee S, Paek NC, Kim JH, Song PS, Choi G (2002) AtMYB21, a gene encoding a flower-specific transcription factor, is regulated by COP1. Plant J 30:23–32

    Article  CAS  PubMed  Google Scholar 

  • Sonoda Y, Yao S-G, Sako K, Sato T, Kato W, Ohto M, Ichikawa K, Matsui M, Yamaguchi J, Ikeda A (2008) SHA1, a novel RING finger protein, functions in shoot apical meristem maintenance in Arabidopsis. Plant J 50:586–596

    Article  CAS  Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17:616–627

    Article  CAS  PubMed  Google Scholar 

  • Stintzi A, Browse J (2000) The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Nat Acad Sci USA 97:10625–10630

    Article  CAS  PubMed  Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroftb L (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  CAS  PubMed  Google Scholar 

  • Udall JA, Wendel JF (2006) Polyploidy and crop improvement. Crop Sci 46:3–13

    Article  CAS  Google Scholar 

  • Udvardi MK, Czechowski T, Scheible WR (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    Article  CAS  PubMed  Google Scholar 

  • Ueda J, Kato J (1980) Isolation and identification of a senescence promoting substance from wormwood (Artemisia absinthium L.). Plant Physiol 66:246–249

    Article  CAS  PubMed  Google Scholar 

  • UN (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681–697

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H (2006) The wound response in tomato—role of jasmonic acid. J Plant Physiol 163:297–306

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Meyerowitz EM (1993) Activation of floral homeotic genes in Arabidopsis. Science 261:1723–1726

    Article  CAS  PubMed  Google Scholar 

  • Weiler E (1997) Octadecanoid-mediated signal transduction in higher plants. Naturwissenschaften 84:340–349

    Article  CAS  Google Scholar 

  • Wilson RN, Heckman JW, Somerville C (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100:403–408

    Article  CAS  PubMed  Google Scholar 

  • Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280:1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Yoshihara T, Omer E-LA, Koshino H, Sakamura S, Kikuta Y, Koda Y (1989) Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agric Biol Chem 53:2835–2837

    CAS  Google Scholar 

Download references

Acknowledgments

The work of our laboratory was supported by Natural Science Foundation of China (abbreviated as NSFC; the program code: 30671339), National High-Tech R and D Program (abbreviated as 863 program; the program code: 2006AA10A113), and National Basic Research Program of China (abbreviated as 973 projects, program code: 2006CB101602). The authors are thankful to Prof. Ghulam Jilani, PMAS Arid Agriculture University, Pakistan, for giving critic comments; to EnPaper Company for English editing; to Institute of Agricultural and Environmental Sciences (985-IAES) for providing the convenience to use equipments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixi Jiang.

Additional information

H. Pak, Y. Guo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pak, H., Guo, Y., Chen, M. et al. The effect of exogenous methyl jasmonate on the flowering time, floral organ morphology, and transcript levels of a group of genes implicated in the development of oilseed rape flowers (Brassica napus L.). Planta 231, 79–91 (2009). https://doi.org/10.1007/s00425-009-1029-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1029-9

Keywords

Navigation